4511
правок
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) мНет описания правки |
||
(не показано 16 промежуточных версий этого же участника) | |||
Строка 37: | Строка 37: | ||
Однако такой анализ является не вполне корректным. Далее будут рассмотрены некоторые конкретные вопросы и предложена новая общая техника анализа алгоритма | Однако такой анализ является не вполне корректным. Далее будут рассмотрены некоторые конкретные вопросы и предложена новая общая техника анализа жадного алгоритма аппроксимации с несубмодулярной гармонической функцией. | ||
== Основные результаты == | == Основные результаты == | ||
Строка 125: | Строка 125: | ||
Теперь вернемся к анализу жадного алгоритма A для MCDS. Кажется, что субмодулярность f в нем не используется. Однако на деле она используется в следующем утверждении: | Теперь вернемся к анализу жадного алгоритма A для MCDS. Кажется, что субмодулярность f в нем не используется. Однако на деле она используется в следующем утверждении: | ||
«Поскольку добавление C* к | «Поскольку добавление <math>C^* \; </math> к <math>C_i \;</math> уменьшит значение гармонической функции с <math>f(C_i) \;</math> до 2, значение f, уменьшенной на вершину из <math>C^* \;</math>, будет в среднем составлять <math>(f(C_i) - 2)/opt \;</math>. Согласно жадному правилу выбора <math>x_i + 1 \;</math>, должно иметь место соотношение <math>f(C_i) - f(C_{i + 1}) \ge \frac{f(C_i) - 2}{opt}</math>». | ||
Чтобы убедиться в этом, рассмотрим утверждение более внимательно. | Чтобы убедиться в этом, рассмотрим утверждение более внимательно. | ||
Пусть <math>C^* = \{ y_i, ..., у_opt \} \;</math>; обозначим <math>C^*_j = \{ y_1, ..., y_j \} </math>. Тогда | |||
<math>f(C_i) - 2 = f(C_i) - f(C_i \cup C^*) = \sum_{j=1}^{opt} [f(C_i \cup C^*_{j - 1}) - f(C_i \cup C^*_j) ] </math>, | |||
где <math>C^*_0 = \empty \;</math>. Согласно жадному правилу выбора <math>x_i + 1 \;</math>, должно иметь место соотношение <math>f(C_i) - f(C_{i + 1}) \ge f(C_i) - f(C_i \cup \{ y_i \} )</math> для <math>j = 1, ..., opt \;</math>. Следовательно, для того, чтобы выполнялось | |||
<math>f(C_i) - f(C_{i + 1}) \ge \frac{f(C_i) - 2}{opt}</math>, | |||
должно выполняться соотношение | |||
(2) <math> - \Delta_{y_j} f(C_i) = f(C_i) - f(C_i \; \cup \; \{ y_j \} ) \ge f(C_i \; \cup \; C^*_{j - 1}) - f(C_i \; \cup \; C^*_j) = - \Delta_{y_j} f(C_i \; \cup\; C^*_{j - 1})</math>. | |||
Строка 143: | Строка 152: | ||
Отказ от субмодулярности | '''Отказ от субмодулярности''' | ||
Отказ от субмодулярности – непростой вопрос, уже долгое время остающийся открытым. Однако это возможно благодаря наблюдению Дю и коллег относительно утверждения (2) в [1]: субмодулярность –f применяется для приращения вершины <math>y_j \;</math>, принадлежащей к оптимальному решению <math>C^* \;</math>. | |||
В силу гибкости упорядочения вершин <math>y_j \;</math> можно организовать его таким образом, чтобы контролировать величину <math>\Delta_{y_j} f(C_i) - \Delta_{y_j} f(C_i \cup C^*_{j - 1} )</math>. Это позволит успешно справиться с задачей MCDS. | |||
'''Лемма 3'''. Пусть значения <math>y_j \;</math> упорядочены таким образом, что для любого <math>j = 1, ..., opt \;</math> последовательность <math>\{ y_1, ..., y_j \} \;</math> порождает связный подграф. Тогда <math>\Delta_{y_j} f(C_i) - \Delta_{y_j} f(C_i \cup C^*_{j - 1}) \le 1</math>. | |||
''Доказательство''. Поскольку все <math>y_1, ..., y_{j - 1} \;</math> являются связными, <math>y_j \;</math> может доминировать не более одного дополнительного связного компонента в подграфе, порожденном <math>C_{i - 1} \cup C^*_{j - 1} \;</math> , относительно подграфа, порожденного <math>C_{i - 1} \;</math>. Следовательно, <math>\Delta_{y_j} p(C_i) - \Delta_{y_j} f(C_i \cup C^*_{j - 1}) \le 1</math>. | |||
Более того, поскольку –q является субмодулярной, <math>\Delta_{y_j} q(C_i) - \Delta_{y_j} q(C_i \cup C^*_{j - 1}) \le 0</math>. | |||
Таким образом, <math>\Delta_{y_j} f(C_i) - \Delta_{y_j} f(C_i \cup C^*_{j - 1}) \le 1</math>. | |||
Таким образом, | |||
Теперь можно провести корректный анализ жадного алгоритма A для MCDS [4]. Согласно лемме 3 | Теперь можно провести корректный анализ жадного алгоритма A для MCDS [4]. Согласно лемме 3, <math>f(C_i) - f(C_{i + 1}) \ge \frac{f(C_i) - 2}{opt} - 1</math>. | ||
Следовательно, | Следовательно, <math>f(C_{i + 1}) - 2 - opt \le (f(C_i) - 2 + opt) \left ( 1 - \frac{1}{opt} \right ) \le (f( \empty ) - 2 - opt) \left ( 1 - \frac{1}{opt} \right )^{i + 1} = (n - 2 - opt) \left ( 1 - \frac{1}{opt} \right )^{i + 1}</math>, | ||
f( | |||
= (n - 2 - opt) ( 1 - 1 opt | |||
где <math>n = |V| \;</math>. Заметим, что <math>1 - 1/opt \le e^{-1/opt}</math>. Таким образом, <math>f(C_i) - 2 - opt \le (n - 2) e^{ -i/opt}</math>. | |||
f( | |||
opt | |||
g - i | Выберем такое <math>i \;</math>, чтобы выполнялось <math>f(C_i) \ge 2 \cdot opt + 2 > f(C_{i+1})</math>. Тогда <math>opt \le (n - 2) e^{ -i/opt}</math> и <math>g - i \le 2 \cdot opt \;</math>. | ||
Следовательно, <math>g \le 2 \cdot opt + i \le opt \left ( 2 + ln \frac {n - 2} {opt} \right ) \le opt (2 + ln \; \delta)</math>, где <math>\delta \;</math> – максимальная степень исходного графа G. | |||
где | |||
== Применение == | == Применение == | ||
Строка 183: | Строка 193: | ||
== Открытые вопросы == | == Открытые вопросы == | ||
Можно ли определить коэффициент эффективности 1 + H( | Можно ли определить коэффициент эффективности <math>1 + H( \delta) \;</math> для жадного алгоритма B в задаче MCDS? Ответ неизвестен. Неизвестно также, как получить четкое обобщение теоремы 1. | ||
== См. также == | == См. также == | ||
* ''[[Связное доминирующее множество]] | * ''[[Связное доминирующее множество]] | ||
* ''[[Алгоритмы локального поиска для | * ''[[Алгоритмы локального поиска для k-КНФ]] | ||
* ''[[Деревья Штейнера]] | * ''[[Деревья Штейнера]] | ||
== Литература == | == Литература == |
правок