4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 79: | Строка 79: | ||
Напротив, если <math>\Delta_x f(A) \ge \Delta_x f(B)</math> для любого <math>x \in B \;</math> и <math>A \subseteq B \;</math>, тогда, для любых x и A, <math>\Delta_x f(A) \ge \Delta_x f(A \cup \{ x \} ) = 0</math>, то есть <math>f(A) \le f(A \cup \{ x \} )</math>. Пусть <math>B - A = \{ x_1, ..., x_k \}</math>. Тогда | Напротив, если <math>\Delta_x f(A) \ge \Delta_x f(B)</math> для любого <math>x \in B \;</math> и <math>A \subseteq B \;</math>, тогда, для любых x и A, <math>\Delta_x f(A) \ge \Delta_x f(A \cup \{ x \} ) = 0</math>, то есть <math>f(A) \le f(A \cup \{ x \} )</math>. Пусть <math>B - A = \; \{ x_1, ..., x_k \}</math>. Тогда <math>f(A) \le f(A \cup \{ x_1 \} ) \le f(A \cup \{ x_1, x_2 \} ) \le ... \le f(B)</math>. | ||
f(A) | |||
Рассмотрим теперь субмодулярность | |||
Рассмотрим теперь субмодулярность -q(A). | |||
Лемма 2. Если A С B, то Ayq(A) > Ayq(B). | |||
Доказательство. Заметим, что каждый связный компонент графа (v, D(B)) состоит из одного или нескольких связных компонентов графа (v, D(A)), поскольку A С B. Следовательно, количество связных компонентов (v, D(B)), доминируемых y, не превышает количества связных компонентов (v, D(A)), доминируемых y. Таким образом, лемма верна. | Доказательство. Заметим, что каждый связный компонент графа (v, D(B)) состоит из одного или нескольких связных компонентов графа (v, D(A)), поскольку A С B. Следовательно, количество связных компонентов (v, D(B)), доминируемых y, не превышает количества связных компонентов (v, D(A)), доминируемых y. Таким образом, лемма верна. |
правка