4551
правка
Irina (обсуждение | вклад) (Новая страница: «== Ключевые слова и синонимы == Техника анализа жадной аппроксимации == Постановка задачи…») |
Irina (обсуждение | вклад) |
||
Строка 4: | Строка 4: | ||
== Постановка задачи == | == Постановка задачи == | ||
Рассмотрим граф G = (V, E). Множество C множества V называется доминирующим множеством, если каждая вершина либо принадлежит к C, либо смежна с вершиной, принадлежащей к C. Если подграф, порожденный С, является связным, то C называется связным доминирующим множеством. Пусть дан связный граф G; необходимо найти связное доминирующее множество минимальной мощности. Эта задача имеет обозначение MCDS и является NP-полной. Ее оптимальное решение называется минимальным связным доминирующим множеством. Рассмотрим жадную аппроксимацию с гармонической функцией f. | Рассмотрим граф G = (V, E). Множество C множества V называется <math>доминирующее множество|доминирующим множеством</math>, если каждая вершина либо принадлежит к C, либо смежна с вершиной, принадлежащей к C. Если подграф, порожденный С, является связным, то C называется <math>связное доминирующее множество|связным доминирующим множеством</math>. | ||
Пусть дан связный граф G; необходимо найти связное доминирующее множество минимальной мощности. Эта задача имеет обозначение MCDS и является NP-полной. Ее оптимальное решение называется минимальным связным доминирующим множеством. Рассмотрим жадную аппроксимацию с гармонической функцией f. | |||
Строка 40: | Строка 41: | ||
Однако такой анализ является не вполне корректным. Далее будут рассмотрены некоторые конкретные вопросы и предложена новая общая техника анализа алгоритма жадной аппроксимации с несубмодулярной гармонической функцией. | Однако такой анализ является не вполне корректным. Далее будут рассмотрены некоторые конкретные вопросы и предложена новая общая техника анализа алгоритма жадной аппроксимации с несубмодулярной гармонической функцией. | ||
== Основные результаты == | == Основные результаты == |
правка