Аноним

Ширина ленты графа: различия между версиями

Материал из WEGA
м
Строка 18: Строка 18:
Файги доказал следующие положения.
Файги доказал следующие положения.


 
'''
Теорема 1. Существует эффективный алгоритм, который для графа G = (V, E) устанавливает линейный порядок ж: V !f 1; 2; :::; ng. ::; ng, для которого bw^(G) < O I (log n)3 plog n log log n J • D(G). В частности, имеется полилогарифмический относительно n алгоритм аппроксимации для решения задачи нахождения ширины ленты в графах общего вида.
Теорема 1. Существует эффективный алгоритм, который для графа G = (V, E) устанавливает линейный порядок ж: V !f 1; 2; :::; ng. ::; ng, для которого bw^(G) < O I (log n)3 plog n log log n J • D(G). В частности, имеется полилогарифмический относительно n алгоритм аппроксимации для решения задачи нахождения ширины ленты в графах общего вида.'''




Строка 37: Строка 37:


Требование kf(u) — f(v)k < 1 для каждого ребра fu; vg является естественным, поскольку f(u) и f(v) должны иметь сходные проекции на произвольное направление a; из этого интуитивно следует, что u и v будут отображаться в порожденном линейном порядке не слишком далеко друг от друга. Но даже если jh(u) — h(v)j мало, может оказаться, что между h(u) и h(v) проецируется слишком много вершин, из-за чего между u и v возникает значительное растяжение. Чтобы избежать такой ситуации, изображения вершин должны быть в достаточной мере «разнесены», что соответствует требованию большого объема выпуклой оболочки изображений.
Требование kf(u) — f(v)k < 1 для каждого ребра fu; vg является естественным, поскольку f(u) и f(v) должны иметь сходные проекции на произвольное направление a; из этого интуитивно следует, что u и v будут отображаться в порожденном линейном порядке не слишком далеко друг от друга. Но даже если jh(u) — h(v)j мало, может оказаться, что между h(u) и h(v) проецируется слишком много вершин, из-за чего между u и v возникает значительное растяжение. Чтобы избежать такой ситуации, изображения вершин должны быть в достаточной мере «разнесены», что соответствует требованию большого объема выпуклой оболочки изображений.


== Применение ==
== Применение ==
4551

правка