Полностью динамический алгоритм нахождения кратчайших путей между всеми парами: различия между версиями

Перейти к навигации Перейти к поиску
Строка 39: Строка 39:


== Открытые вопросы ==
== Открытые вопросы ==
Недавние исследования в области динамических алгоритмов нахождения кратчайших путей поставили новые и весьма интересные вопросы. Можно ли уменьшить объем памяти, необходимой динамическому алгоритму нахождения кратчайших путей, до O(n2)? Возможно, еще более важный вопрос заключается в том, можно ли эффективно решить полностью динамическую задачу достижимости и нахождения кратчайших путей с единственным источником на графах общего вида? Наконец, существуют ли техники общего вида, позволяющие сделать полностью динамическими алгоритмы, использующие только приращение? Подобные техники широко использовались в случае полностью динамических алгоритмов на неориентированных графах [11, 12, 13].
Недавние исследования в области динамических алгоритмов нахождения кратчайших путей поставили новые и весьма интересные вопросы. Можно ли уменьшить объем памяти, необходимой динамическому алгоритму нахождения кратчайших путей, до <math>O(n^2) \; </math>? Возможно, еще более важный вопрос заключается в том, можно ли эффективно решить полностью динамическую задачу достижимости и нахождения кратчайших путей ''с единственным источником'' на графах общего вида? Наконец, существуют ли техники общего вида, позволяющие сделать полностью динамическими алгоритмы, использующие только приращение? Подобные техники широко использовались в случае полностью динамических алгоритмов на неориентированных графах [11, 12, 13].
 


== Экспериментальные результаты ==
== Экспериментальные результаты ==
4824

правки

Навигация