4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 87: | Строка 87: | ||
<math>\frac {1} {{\mathcal{b} m/(h + 1)\mathcal{c}}} \sum_{i=0}^{\mathcal{b} m/(h + 1)\mathcal{c} - 1} |F(i(h+1))| \le ( \varepsilon\ /2)opt</math> | <math>\frac {1} {{\mathcal{b} m/(h + 1)\mathcal{c}}} \sum_{i=0}^{\mathcal{b} m/(h + 1)\mathcal{c} - 1} |F(i(h+1))| \le ( \varepsilon\ /2)opt</math> | ||
Это означает, что по меньшей мере половина <math>F(i(h + 1)) \; </math> для <math>i = 0; 1, ... , \mathcal{b} m/(h + 1)\mathcal{c} - 1</math> удовлетворяет соотношению<math>|F(i(h + 1))| \le \varepsilon\ \cdot opt</math>. □ | |||
Окончательный результат | |||
Теперь рассмотрим K(a) и F(a). Согласно леммам 2 и 3, существуют <math>a \in \big\{ 0, h + 1, ... , (\mathcal{b} m/(h + 1)\mathcal{c} - 1)(h + 1) \big\} </math>, такие, что | |||
<math>|K(a) \cup F(a)| \le (1 + \varepsilon\ )opt</math>. | |||
'''Лемма 4.''' Для <math>0 \le a \le m — 1</math>, <math>K(a) \cup F(a)</math> представляет собой связное доминирующее множество для исходного связного графа G. | |||
Доказательство. Очевидно, что <math>K(a) \cup F(a)</math> является доминирующим множеством для исходного графа G. Его связность можно показать следующим образом. Заметим, что центральная и граничная области перекрываются на область шириной 1. Таким образом, для любого связного компонента H подграфа <math>G_e(h) \; </math>, у F(a) имеется вершина в H. Следовательно, F(a) должен иметь связь с любым связным доминирующим множеством для H, особенно с <math>D_H \; </math> в K(a). Это означает, что <math>D_H \; </math> восстанавливает связи с F, потерянные в результате отрезания части в H. Следовательно, связность <math>K(a) \cup F(a)</math> следует из связности F. □ | |||
Суммируя вышеприведенные положения, получаем следующий результат: | |||
'''Теорема 1.''' Существует <math>(1 + \varepsilon\ )</math>-аппроксимация для построения минимального связного доминирующего множества в связных графах единичных дисков, время исполнения которой составляет <math>n^{O((1/ \varepsilon\ )log(1/ \varepsilon\ )^2)}</math>. | |||
== Применение == | == Применение == |
правка