Бинарный граф решений: различия между версиями

Перейти к навигации Перейти к поиску
Строка 22: Строка 22:
'''Деревья Шеннона'''
'''Деревья Шеннона'''


Пусть f – булева функция на области определения {0,1}<math>^n</math>. Ассоциируем n размерностей с переменными x0, ..., xn-1. Тогда положительным сомножителем f относительно xi, обозначаемым fxi, является функция на области определения {0,1}<math>^n</math>, которая задается следующим образом
Пусть f – булева функция на области определения {0,1}<math>^n</math>. Ассоциируем n размерностей с переменными <math>x_0, ..., x_{n-1}</math>. Тогда [[положительный сомножитель|положительным сомножителем]] f относительно <math>x_i</math>, обозначаемым <math>f_{Xi}</math>, является функция на области определения {0,1}<math>^n</math>, которая задается следующим образом


fxi(α0, ... ,αi-1, ai, αi+1, …, αn-1) = f(α0, ... ,αi-1, 1, αi+1, …, αn-1).
fxi(α0, ... ,αi-1, ai, αi+1, …, αn-1) = f(α0, ... ,αi-1, 1, αi+1, …, αn-1).
4551

правка

Навигация