4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 38: | Строка 38: | ||
Бинарная диаграмма решений (БДР) представляет собой бесконтурный орграф с выдеренной вершиной и не более чем двумя стоками, один из которых имеет метку 0, а другой – метку 1. Вершины, не являющиеся стоками, помечены переменными. Каждая вершина, не являющаяся стоком, имеет две исходящих дуги; одна из них имеет метку 1 и ведет к 1-потомку, другая имеет метку 0 и ведет к 0-потомку. Переменные должны быть упорядочены; иначе говоря, если переменная-метка xi появляется раньше метки xj на некотором пути из вершины к стоку, тогда метка xj не может встречаться до xi ни на одном пути из вершины к стоку. Две вершины являются изоморфными, если обе являются стоками с одинаковой меткой либо представляют собой вершины, не являющиеся стоками, с одной и той же переменной-меткой, причем их 0-потомки и 1-потомки изоморфны. Чтобы бесконтурный орграф был допустимой БДР, необходимо, чтобы в нем не было изоморфных вершин и чтобы никакие вершины не имели одинаковых 0-потомков и 1-потомков. | Бинарная диаграмма решений (БДР) представляет собой бесконтурный орграф с выдеренной вершиной и не более чем двумя стоками, один из которых имеет метку 0, а другой – метку 1. Вершины, не являющиеся стоками, помечены переменными. Каждая вершина, не являющаяся стоком, имеет две исходящих дуги; одна из них имеет метку 1 и ведет к 1-потомку, другая имеет метку 0 и ведет к 0-потомку. Переменные должны быть упорядочены; иначе говоря, если переменная-метка xi появляется раньше метки xj на некотором пути из вершины к стоку, тогда метка xj не может встречаться до xi ни на одном пути из вершины к стоку. Две вершины являются изоморфными, если обе являются стоками с одинаковой меткой либо представляют собой вершины, не являющиеся стоками, с одной и той же переменной-меткой, причем их 0-потомки и 1-потомки изоморфны. Чтобы бесконтурный орграф был допустимой БДР, необходимо, чтобы в нем не было изоморфных вершин и чтобы никакие вершины не имели одинаковых 0-потомков и 1-потомков. | ||
Основной результат теории БДР заключается в следующем: если дано фиксированное упорядочение переменных, то представление является уникальным с точностью до изоморфизма. Иначе говоря, если F и G являются БДР, представляющими f: {0, 1}<math>^n</math> <math>\mapsto</math> {0, 1} с порядком переменных x1 | Основной результат теории БДР заключается в следующем: если дано фиксированное упорядочение переменных, то представление является уникальным с точностью до изоморфизма. Иначе говоря, если F и G являются БДР, представляющими f: {0, 1}<math>^n</math> <math>\mapsto</math> {0, 1} с порядком переменных x1 [[Файл:Sign.jpg]] x2 [[Файл:Sign.jpg]] ... xn, то F и G являются изоформными. | ||
Определение изоморфизма напрямую дает нам рекурсивный алгоритм проверки на изоморфизм. Однако он имеет экспоненциальную по отношению к числу узлов сложность; это можно проиллюстрировать, в частности, при помощи проверки изоморфизма БДР для функции четности относительно ее самой. Экспоненциальная сложность связана с постоянно возникающими проверками на изоморфизм между парами вершин; решение может быть найдено в динамическом программировании. Кэширование проверок на изоморфизм снижает сложность этих проверок до O(|F| • |G|), где |B| обозначает количество вершин в БДР B. | Определение изоморфизма напрямую дает нам рекурсивный алгоритм проверки на изоморфизм. Однако он имеет экспоненциальную по отношению к числу узлов сложность; это можно проиллюстрировать, в частности, при помощи проверки изоморфизма БДР для функции четности относительно ее самой. Экспоненциальная сложность связана с постоянно возникающими проверками на изоморфизм между парами вершин; решение может быть найдено в динамическом программировании. Кэширование проверок на изоморфизм снижает сложность этих проверок до O(|F| • |G|), где |B| обозначает количество вершин в БДР B. | ||
правка