4194
правки
Glk (обсуждение | вклад) (Создана новая страница размером '''Alternating chain''' --- альтернирующая цепь, чередующаяся цепь. Given a chain <math>P = v_{0},v_{1...) |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Alternating chain''' | '''Alternating chain''' — ''[[альтернирующая цепь]], [[чередующаяся цепь]].'' | ||
Given a chain <math>P = v_{0},v_{1},\ldots,v_{k}</math>, <math>P</math> is '''alternating''' | Given a chain <math>P = v_{0},v_{1},\ldots,v_{k}</math>, <math>\,P</math> is '''alternating''' | ||
with respect to a ''matching'' <math>M</math> if each edge in <math>P</math> that does not | with respect to a ''matching'' <math>\,M</math> if each [[edge]] in <math>\,P</math> that does not | ||
belong to <math>M</math> is followed in <math>P</math> by an edge that belongs to <math>M</math>, and | belong to <math>\,M</math> is followed in <math>\,P</math> by an edge that belongs to <math>\,M</math>, and | ||
vice versa. If <math>P</math> is alternating, the index <math>k</math> is odd, and <math>v_{0}, | vice versa. If <math>\,P</math> is alternating, the index <math>\,k</math> is odd, and <math>\,v_{0}, | ||
v_{k} \not \in V(M)</math>, then <math>P</math> is '''augmenting''' with respect to | v_{k} \not \in V(M)</math>, then <math>\,P</math> is '''augmenting''' with respect to | ||
<math>M</math>. A well known result due to Berge states that <math>M</math> is maximum if | <math>\,M</math>. A well known result due to Berge states that <math>\,M</math> is maximum if | ||
and only if <math>M</math> does not admit any augmenting chains. | and only if <math>\,M</math> does not admit any augmenting chains. |