Комбинаторно двойственный граф: различия между версиями
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
				
		
		
	
KEV (обсуждение | вклад) Нет описания правки  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Комбинаторно двойственный граф''' (''[[Combinatoricaly dual graph]]'')   | '''Комбинаторно двойственный граф''' (''[[Combinatoricaly dual graph]]'') — для данного [[граф|графа]] <math>\,G</math> граф <math>G^{\ast}</math> такой, что существует взаимно однозначное соответствие между их множествами [[ребро|ребер]], при котором для любых соответствующих подмножеств ребер <math>\,Y</math> и <math>Y^{\ast}</math> ''[[коциклический ранг графа|коциклический ранг'' графа]] <math>G \setminus Y</math> равен коциклическому рангу <math>\,G</math> минус ''[[циклический ранг графа|циклический ранг]]'' части <math><Y^{\ast}></math> графа <math>G^{\ast}</math>, порожденной множеством ребер  <math>Y^{\ast}</math>.  | ||
==Литература==  | ==Литература==  | ||
* Харари Ф. Теория графов. —  М.: Мир, 1973.  | |||
Текущая версия от 11:06, 28 марта 2011
Комбинаторно двойственный граф (Combinatoricaly dual graph) — для данного графа [math]\displaystyle{ \,G }[/math] граф [math]\displaystyle{ G^{\ast} }[/math] такой, что существует взаимно однозначное соответствие между их множествами ребер, при котором для любых соответствующих подмножеств ребер [math]\displaystyle{ \,Y }[/math] и [math]\displaystyle{ Y^{\ast} }[/math] коциклический ранг графа [math]\displaystyle{ G \setminus Y }[/math] равен коциклическому рангу [math]\displaystyle{ \,G }[/math] минус циклический ранг части [math]\displaystyle{ \lt Y^{\ast}\gt }[/math] графа [math]\displaystyle{ G^{\ast} }[/math], порожденной множеством ребер [math]\displaystyle{ Y^{\ast} }[/math].
Литература
- Харари Ф. Теория графов. — М.: Мир, 1973.