Задача о разбиении: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
 
Строка 1: Строка 1:
'''Задача о разбиении''' (''[[Partitioning problem]]'') - одна из основных ''<math>\mathcal NP</math>-полных'' задач. Формулируется следующим образом.
'''Задача о разбиении''' (''[[Partitioning problem]]'') одна из основных ''<math>\mathcal NP</math>-полных'' задач. Формулируется следующим образом.


Существует ли разбиение данного конечного множества элементов, имеющих неотрицательный вес, на два подмножества, равных по суммарному весу составляющих их элементов?
Существует ли разбиение данного конечного множества элементов, имеющих неотрицательный вес, на два подмножества, равных по суммарному весу составляющих их элементов?


==См. также==  
==См. также==  
''[[Задача о вершинном покрытии]], [[Задача о выполнимости]], [[Задача о клике]], [[Задача о неэквивалентности регулярных выражений]], [[Задача о точном покрытии 3-множествами]], [[Задача о трехмерном сочетании]], [[Классы P и NP|Классы <math>\mathcal P</math> и <math>\mathcal NP</math>]], [[Метод локальной замены]], [[Метод построения компонент]], [[Метод сужения задачи]], [[Полиномиальная сводимость (трансформируемость)]], [[NP-Полная задача|<math>\mathcal NP</math>-полная задача]], [[Труднорешаемая задача]].''
* ''[[Задача о вершинном покрытии]],''
* ''[[Задача о выполнимости]],''
* ''[[Задача о клике]],''
* ''[[Задача о неэквивалентности регулярных выражений]],''
* ''[[Задача о точном покрытии 3-множествами]],''
* ''[[Задача о трехмерном сочетании]],''
* ''[[Классы P и NP|Классы <math>\mathcal P</math> и <math>\mathcal NP</math>]],''
* ''[[Метод локальной замены]],''
* ''[[Метод построения компонент]],''
* ''[[Метод сужения задачи]],''
* ''[[Полиномиальная сводимость (трансформируемость)]],''
* ''[[NP-Полная задача|<math>\mathcal NP</math>-полная задача]],''
* ''[[Труднорешаемая задача]].''
==Литература==
==Литература==
[Ахо-Хопкрофт-Ульман],
* Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. —  М.: Мир, 1979.


[Касьянов/95]
* Касьянов В.Н.  Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.

Текущая версия от 15:45, 11 февраля 2011

Задача о разбиении (Partitioning problem) — одна из основных [math]\displaystyle{ \mathcal NP }[/math]-полных задач. Формулируется следующим образом.

Существует ли разбиение данного конечного множества элементов, имеющих неотрицательный вес, на два подмножества, равных по суммарному весу составляющих их элементов?

См. также

Литература

  • Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979.
  • Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.