Fragment of flow graph: различия между версиями
KVN (обсуждение | вклад) Нет описания правки |
KVN (обсуждение | вклад) Нет описания правки |
||
| Строка 1: | Строка 1: | ||
'''Fragment of flow graph''' --- [[Фрагмент уграфа|''фрагмент уграфа'']]. | '''Fragment of flow graph''' --- [[Фрагмент уграфа|''фрагмент уграфа'']]. | ||
A subgraph of a | A [[subgraph]] of a [[control flow graph]] <math>G</math> is called a '''fragment'''. | ||
A fragment <math>A</math> is a '''subfragment''' of <math>B</math>, if <math>A\subseteq B</math>; it is a | A fragment <math>A</math> is a '''subfragment''' of <math>B</math>, if <math>A\subseteq B</math>; it is a | ||
| Строка 8: | Строка 8: | ||
A node <math>p</math> of a fragment <math>A</math> is called '''initial''' (respectively, '''output''' or '''exit''') | A node <math>p</math> of a fragment <math>A</math> is called '''initial''' (respectively, '''output''' or '''exit''') | ||
if either <math>p</math> is the initial node of <math>G</math> (respectively, <math>p</math> is the terminal node of <math>G</math>) | if either <math>p</math> is the initial node of <math>G</math> (respectively, <math>p</math> is the terminal node of <math>G</math>) | ||
or an arc of <math>G</math> not belonging to <math>A</math> enters <math>p</math> ( respectively, leaves <math>p</math>). | or an arc of <math>G</math> not belonging to <math>A</math> enters <math>p</math> (respectively, leaves <math>p</math>). | ||
A node <math>p</math> of a fragment <math>A</math> is called its '''entry ''' if there is a part from the initial node of <math>G</math> to <math>p</math> | A node <math>p</math> of a fragment <math>A</math> is called its '''entry ''' if there is a part from the initial node of <math>G</math> to <math>p</math> | ||
Текущая версия от 12:23, 29 октября 2025
Fragment of flow graph --- фрагмент уграфа.
A subgraph of a control flow graph [math]\displaystyle{ G }[/math] is called a fragment.
A fragment [math]\displaystyle{ A }[/math] is a subfragment of [math]\displaystyle{ B }[/math], if [math]\displaystyle{ A\subseteq B }[/math]; it is a proper subfragment if [math]\displaystyle{ A\neq B }[/math].
A node [math]\displaystyle{ p }[/math] of a fragment [math]\displaystyle{ A }[/math] is called initial (respectively, output or exit) if either [math]\displaystyle{ p }[/math] is the initial node of [math]\displaystyle{ G }[/math] (respectively, [math]\displaystyle{ p }[/math] is the terminal node of [math]\displaystyle{ G }[/math]) or an arc of [math]\displaystyle{ G }[/math] not belonging to [math]\displaystyle{ A }[/math] enters [math]\displaystyle{ p }[/math] (respectively, leaves [math]\displaystyle{ p }[/math]).
A node [math]\displaystyle{ p }[/math] of a fragment [math]\displaystyle{ A }[/math] is called its entry if there is a part from the initial node of [math]\displaystyle{ G }[/math] to [math]\displaystyle{ p }[/math] that includes no arcs of the fragment [math]\displaystyle{ A }[/math]. [math]\displaystyle{ p }[/math] is called a terminal node of a fragment [math]\displaystyle{ A }[/math] if [math]\displaystyle{ p }[/math] does not belong to [math]\displaystyle{ A }[/math] and is a successor of a node of [math]\displaystyle{ A }[/math].
A node [math]\displaystyle{ p }[/math] of a fragment [math]\displaystyle{ A }[/math] other than the initial and terminal nodes of [math]\displaystyle{ G }[/math] is called a boundary of [math]\displaystyle{ A }[/math] if [math]\displaystyle{ p }[/math] is the initial or output node of [math]\displaystyle{ A }[/math].
Let [math]\displaystyle{ p }[/math] be a boundary node of a fragment [math]\displaystyle{ A }[/math]. It is called starting of [math]\displaystyle{ A }[/math] if [math]\displaystyle{ A }[/math] contains no predecessors of [math]\displaystyle{ p }[/math] or all successors of [math]\displaystyle{ p }[/math]. It is called finishing of [math]\displaystyle{ A }[/math] if [math]\displaystyle{ A }[/math] contains all predecessors of [math]\displaystyle{ p }[/math] or no successors of [math]\displaystyle{ p }[/math].