(Абстрактное) синтаксическое представление: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
 
Строка 38: Строка 38:
[[Категория:Теория формальных языков]]
[[Категория:Теория формальных языков]]
[[Категория:Синтаксические деревья]]
[[Категория:Синтаксические деревья]]
[[Категория:Основные термины]]

Текущая версия от 20:24, 11 ноября 2024

(Абстрактное) синтаксическое представление((Abstract) syntax representation ) — такое представление транслируемой программы, которое содержит информацию о синтаксической структуре программы в виде, удобном для ее последующей обработки. Одна из целей абстрактного синтаксического представления состоит в независимости его от внешней (конкретной) формы программы.

(Абстрактное) синтаксическое представление может быть и деревом, однако оно отличается от дерева вывода тем, что сохраняет только существенную информацию о программе, тогда как дерево вывода, напротив, — много избыточной информации. В этом смысле абстрактное синтаксическое дерево является конденсированной формой дерева вывода, удобной для представления структуры языковых конструкций с точки зрения семантики. В абстрактном синтаксическом дереве (называемом также деревом Канторовича по имени русского математика Л.В.Канторовича, который в 1955 г. ввел это понятие для случая арифметического выражения) операции (и ключевые слова) не встречаются в качестве листьев, а ассоциируются с внутренними вершинами, которые могут выступать отцами этих листьев и других вершин, изображающих операнды. Для выражения дерево указанного вида обычно называется деревом выражения.

См. также


Литература

  • Евстигнеев В.А., Касьянов В.Н. Теория графов: алгоритмы обработки бесконтурных графов. — Новосибирск: Наука. Сиб. отд-ние, 1998.
  • Толковый словарь по вычислительным системам. — М.: Машиностроение, 1991.
  • Ахо А., Ульман Дж. Теория синтаксического анализа, перевода и компиляции. — М.: Мир, 1978. - Т. 1,2.
  • Бауэр Ф.Л., Гооз Г. Информатика. — М.: Мир, 1990. — Т. 1,2.