Kuratowski's theorem: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Kuratowski's theorem''' --- теорема Куратовского. '''Theorem'''. A graph <math>G</math> is planar iff it does not contain a ''subdivision'' o…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Kuratowski's theorem''' --- теорема Куратовского.  
'''Kuratowski's theorem''' --- [[теорема Куратовского]].  


'''Theorem'''. A graph <math>G</math> is planar iff it does not contain a
'''Theorem'''. A graph <math>G</math> is planar iff it does not contain a ''subdivision'' of <math>K_{5}</math> and <math>K_{3,3}</math>, i.e. iff it does not contain the ''minors'' <math>K_{5}</math> and <math>K_{3,3}</math>.
''subdivision'' of <math>K_{5}</math> and <math>K_{3,3}</math>, i.e. iff it does not
contain the ''minors'' <math>K_{5}</math> and <math>K_{3,3}</math>.


The other name is '''Pontrjagin-Kuratowski's theorem'''.
The other name is '''[[Pontrjagin-Kuratowski's theorem|''Pontrjagin-Kuratowski's theorem'']]'''.

Текущая версия от 20:11, 23 октября 2024

Kuratowski's theorem --- теорема Куратовского.

Theorem. A graph [math]\displaystyle{ G }[/math] is planar iff it does not contain a subdivision of [math]\displaystyle{ K_{5} }[/math] and [math]\displaystyle{ K_{3,3} }[/math], i.e. iff it does not contain the minors [math]\displaystyle{ K_{5} }[/math] and [math]\displaystyle{ K_{3,3} }[/math].

The other name is Pontrjagin-Kuratowski's theorem.