Cycle: различия между версиями
Glk (обсуждение | вклад) (Новая страница: «'''Cycle''' --- замкнутый маршрут, цикл, контур. '''1.''' A closed ''walk'', i.e. a walk such that the starting and ending vertices are t…») |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Cycle''' | '''Cycle''' — ''[[замкнутый маршрут]], [[цикл]], [[контур]].'' | ||
'''1.''' A closed ''walk'', i.e. a walk such that the starting and ending vertices | '''1.''' A [[closed walk|closed ''walk'']], i.e. a walk such that the starting and ending [[vertex|vertices]] are the same and all vertices in the walk are distinct is called is a '''cycle'''. | ||
are the same and all vertices in the walk are distinct is called is a '''cycle'''. | |||
Another name is '''Circuit'''. | Another name is '''[[Circuit]]'''. | ||
'''2.''' For a directed graph, a closed path, i.e. a path <math>v_{0}, \ldots, | '''2.''' For a [[directed graph]], a closed path, i.e. a path <math>\,v_{0}, \ldots,v_{K}</math> is a '''cycle''' if <math>\,k > 1</math> and <math>v_{0} = v_{k}</math>. | ||
v_{K}</math> is a '''cycle''' if <math>k > 1</math> and <math>v_{0} = v_{k}</math>. | |||
'''3.''' The '''inverse cycle''' of a cycle <math>C = (v, v_{1}, \ldots, | '''3.''' The '''[[inverse cycle]]''' of a cycle <math>\,C = (v, v_{1}, \ldots,v_{n-1},v)</math> is the cycle <math>C^{-1} = (v, v_{n-1}, \ldots, v_{1}, v)</math>. Two cycles <math>\,C_{1} = (v_{1}, \ldots, v_{m})</math> and <math>C_{2} = (w_{1},\ldots, w_{m})</math> are called ''' equivalent''' if <math>\,w_{j} = v_{j+k}</math> for all <math>\,j</math>. The inverse cycle of <math>\,C</math> is not equivalent to <math>\,C</math>. Let <math>\,[C]</math> be the equivalence class which contains a cycle <math>\,C</math>. Let <math>\,B^{r}</math> be the cycle obtained by going <math>\,r</math> times around a cycle <math>\,B</math>. Such a cycle is called a multiple of <math>\,B</math>. A cycle <math>\,C</math> is '''primitive''' if both <math>\,C</math> and <math>\,C^{2}</math> have no backtracking (a backtracking is a subsequence of the form <math>\,..., x, y, x,...</math>), and it is not a multiple of a strictly smaller cycle. | ||
v_{n-1},v)</math> is the cycle <math>C^{-1} = (v, v_{n-1}, \ldots, v_{1}, v)</math>. | |||
Two cycles <math>C_{1} = (v_{1}, \ldots, v_{m})</math> and <math>C_{2} = (w_{1}, | ==Литература== | ||
\ldots, w_{m})</math> are called ''' equivalent''' if <math>w_{j} = v_{j+k}</math> for | |||
all <math>j</math>. The inverse cycle of <math>C</math> is not equivalent to <math>C</math>. Let <math>[C]</math> | * Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. | ||
be the equivalence class which contains a cycle <math>C</math>. Let <math>B^{r}</math> be | |||
the cycle obtained by going <math>r</math> times around a cycle <math>B</math>. Such a | |||
cycle is called a multiple of <math>B</math>. A cycle <math>C</math> is '''primitive''' if | |||
both <math>C</math> and <math>C^{2}</math> have no backtracking (a backtracking is a | |||
subsequence of the form <math>..., x, y, x,...</math>), and it is not a multiple of | |||
a strictly smaller cycle. |
Текущая версия от 17:21, 14 декабря 2021
Cycle — замкнутый маршрут, цикл, контур.
1. A closed walk, i.e. a walk such that the starting and ending vertices are the same and all vertices in the walk are distinct is called is a cycle.
Another name is Circuit.
2. For a directed graph, a closed path, i.e. a path [math]\displaystyle{ \,v_{0}, \ldots,v_{K} }[/math] is a cycle if [math]\displaystyle{ \,k \gt 1 }[/math] and [math]\displaystyle{ v_{0} = v_{k} }[/math].
3. The inverse cycle of a cycle [math]\displaystyle{ \,C = (v, v_{1}, \ldots,v_{n-1},v) }[/math] is the cycle [math]\displaystyle{ C^{-1} = (v, v_{n-1}, \ldots, v_{1}, v) }[/math]. Two cycles [math]\displaystyle{ \,C_{1} = (v_{1}, \ldots, v_{m}) }[/math] and [math]\displaystyle{ C_{2} = (w_{1},\ldots, w_{m}) }[/math] are called equivalent if [math]\displaystyle{ \,w_{j} = v_{j+k} }[/math] for all [math]\displaystyle{ \,j }[/math]. The inverse cycle of [math]\displaystyle{ \,C }[/math] is not equivalent to [math]\displaystyle{ \,C }[/math]. Let [math]\displaystyle{ \,[C] }[/math] be the equivalence class which contains a cycle [math]\displaystyle{ \,C }[/math]. Let [math]\displaystyle{ \,B^{r} }[/math] be the cycle obtained by going [math]\displaystyle{ \,r }[/math] times around a cycle [math]\displaystyle{ \,B }[/math]. Such a cycle is called a multiple of [math]\displaystyle{ \,B }[/math]. A cycle [math]\displaystyle{ \,C }[/math] is primitive if both [math]\displaystyle{ \,C }[/math] and [math]\displaystyle{ \,C^{2} }[/math] have no backtracking (a backtracking is a subsequence of the form [math]\displaystyle{ \,..., x, y, x,... }[/math]), and it is not a multiple of a strictly smaller cycle.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.