Central fringe: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Central fringe''' --- центральная область. Some central vertices of <math>G</math> are barely in <math>C(G)</math>, in the sense that they a…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Central fringe''' --- центральная область.  
'''Central fringe''' — [[центральная область]].  


Some central  vertices of <math>G</math> are barely in <math>C(G)</math>,  in the sense that
Some [[central  vertex|central  vertices]] of <math>G</math> are barely in <math>C(G)</math>,  in the sense that
they are adjacent to the vertices that are not central. The
they are adjacent to the [[vertex|vertices]] that are not central. The
subgraph of <math>C(G)</math> induced by those vertices with ''central distance'' <math>0</math> is called the '''central fringe''' of <math>G</math> and is denoted
[[subgraph]] of <math>C(G)</math> induced by those vertices with ''[[central distance]]'' <math>0</math> is called the '''central fringe''' of <math>G</math> and is denoted
by <math>CF(G)</math>.
by <math>CF(G)</math>.
==Литература==
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 12:21, 2 ноября 2012

Central fringeцентральная область.

Some central vertices of [math]\displaystyle{ G }[/math] are barely in [math]\displaystyle{ C(G) }[/math], in the sense that they are adjacent to the vertices that are not central. The subgraph of [math]\displaystyle{ C(G) }[/math] induced by those vertices with central distance [math]\displaystyle{ 0 }[/math] is called the central fringe of [math]\displaystyle{ G }[/math] and is denoted by [math]\displaystyle{ CF(G) }[/math].

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.