Amallamorphic graphs: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Создана новая страница размером '''Amallamorphic graphs''' --- амалламорфные графы. Let <math>M</math> be a multigraph. Let <math>G(M)</math> denote a...) |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Amallamorphic graphs''' | '''Amallamorphic graphs''' — ''[[амалламорфные графы]].'' | ||
Let <math>M</math> be a multigraph. Let <math>G(M)</math> denote a graph | Let <math>M</math> be a [[multigraph]]. Let <math>G(M)</math> denote a [[graph, undirected graph, nonoriented graph|graph]] | ||
obtained from <math>M</math> by replacing every multiple edge by a simple edge. | obtained from <math>M</math> by replacing every [[multiple edges|multiple edge]] by a [[simple edge]]. | ||
Two multigraphs <math>M_{1}</math> and <math>M_{2}</math> are '''amallamorphic''' if | Two multigraphs <math>M_{1}</math> and <math>M_{2}</math> are '''amallamorphic''' if | ||
<math>G(M_{1})</math> is isomorphic to <math>G(M_{2})</math>. | <math>G(M_{1})</math> is [[isomorphic graphs|isomorphic]] to <math>G(M_{2})</math>. |
Текущая версия от 16:21, 1 декабря 2011
Amallamorphic graphs — амалламорфные графы.
Let [math]\displaystyle{ M }[/math] be a multigraph. Let [math]\displaystyle{ G(M) }[/math] denote a graph obtained from [math]\displaystyle{ M }[/math] by replacing every multiple edge by a simple edge. Two multigraphs [math]\displaystyle{ M_{1} }[/math] and [math]\displaystyle{ M_{2} }[/math] are amallamorphic if [math]\displaystyle{ G(M_{1}) }[/math] is isomorphic to [math]\displaystyle{ G(M_{2}) }[/math].