Cycle matroid: различия между версиями
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
				
		
		
	
Glk (обсуждение | вклад)  (Новая страница: «'''Cycle matroid''' --- матроид циклов.   Let <math>E(G)</math> be the edge-set of a graph <math>G</math> and <math>C</math> be the set of cycles. The c…»)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Cycle matroid'''   | '''Cycle matroid''' — ''[[матроид циклов]].''   | ||
Let <math>E(G)</math> be the edge-set of a graph <math>G</math> and <math>C</math> be the set of  | Let <math>\,E(G)</math> be the [[edge]]-set of a [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> and <math>\,C</math> be the set of [[cycle|cycles]]. The cycles satisfy the circuit postulates. Thus, we obtain a ''[[matroid]]'' related to the graph. We denote this matroid by <math>\,M(G)</math> and call it the '''cycle matroid''' of <math>\,G</math>. The bases of <math>\,M(G)</math> are the ''[[spanning tree|spanning trees]]''.  | ||
cycles. The cycles satisfy the circuit postulates. Thus, we obtain a  | |||
''matroid'' related to the graph. We denote this matroid by <math>M(G)</math>  | |||
and call it the '''cycle matroid''' of <math>G</math>. The bases of <math>M(G)</math> are  | |||
the ''spanning trees''.  | |||
The ''rank'' of <math>M(G)</math> is less by 1 than the  | The ''[[rank of a matroid|rank]]'' of <math>\,M(G)</math> is less by <math>\,1</math> than the number of [[vertex|vertices]].  | ||
number of vertices.  | |||
==Литература==  | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.  | |||
Текущая версия от 06:11, 22 декабря 2021
Cycle matroid — матроид циклов.
Let [math]\displaystyle{ \,E(G) }[/math] be the edge-set of a graph [math]\displaystyle{ \,G }[/math] and [math]\displaystyle{ \,C }[/math] be the set of cycles. The cycles satisfy the circuit postulates. Thus, we obtain a matroid related to the graph. We denote this matroid by [math]\displaystyle{ \,M(G) }[/math] and call it the cycle matroid of [math]\displaystyle{ \,G }[/math]. The bases of [math]\displaystyle{ \,M(G) }[/math] are the spanning trees.
The rank of [math]\displaystyle{ \,M(G) }[/math] is less by [math]\displaystyle{ \,1 }[/math] than the number of vertices.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.