Connected hypergraph: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Connected hypergraph''' --- связный гиперграф. A hypergraph such that it is not representable as <math>{\mathcal H}_{1} \cup {\mathcal H}_{2}</m…») |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Connected hypergraph''' | '''Connected hypergraph''' — ''[[связный гиперграф]].'' | ||
A hypergraph such that it is not representable as <math>{\mathcal H}_{1} \cup | A [[hypergraph]] such that it is not representable as <math>{\mathcal H}_{1} \cup | ||
{\mathcal H}_{2}</math>, where <math>{\mathcal H}_{1}, {\mathcal H}_{2}</math> are vertex-disjoint | {\mathcal H}_{2}</math>, where <math>{\mathcal H}_{1}, {\mathcal H}_{2}</math> are [[vertex]]-disjoint | ||
non-empty hypergraphs is called '''connected'''. Note that if <math>\emptyset \in E({\mathcal H})</math>, | [[empty hypergraph|non-empty hypergraphs]] is called '''connected'''. Note that if <math>\emptyset \in E({\mathcal H})</math>, | ||
<math>{\mathcal H}</math> is not connected. | <math>{\mathcal H}</math> is not connected. | ||
==Литература== | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 13:29, 19 марта 2015
Connected hypergraph — связный гиперграф.
A hypergraph such that it is not representable as [math]\displaystyle{ {\mathcal H}_{1} \cup {\mathcal H}_{2} }[/math], where [math]\displaystyle{ {\mathcal H}_{1}, {\mathcal H}_{2} }[/math] are vertex-disjoint non-empty hypergraphs is called connected. Note that if [math]\displaystyle{ \emptyset \in E({\mathcal H}) }[/math], [math]\displaystyle{ {\mathcal H} }[/math] is not connected.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.