Adjacent vertices: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Создана новая страница размером '''Adjacent vertices''' --- смежные вершины. '''1.''' Two different vertices that incident with the same edge are called '...) |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Adjacent vertices''' | '''Adjacent vertices''' — ''[[смежные вершины]].'' | ||
'''1.''' Two different vertices that incident with the | '''1.''' Two different [[vertex|vertices]] that incident with the | ||
same edge are called '''adjacent vertices'''. | same [[edge]] are called '''adjacent vertices'''. | ||
'''2.''' In a digraph <math>G = (V,A)</math>, a vertex <math>u</math> is '''adjacent to''' <math>v</math> if | '''2.''' In a [[digraph]] <math>\,G = (V,A)</math>, a vertex <math>\,u</math> is '''adjacent to''' <math>\,v</math> if | ||
<math>(u,v) \in A(G)</math>, and <math>u</math> is '''adjacent from''' <math>w</math> | <math>(u,v) \in A(G)</math>, and <math>\,u</math> is '''adjacent from''' <math>\,w</math> | ||
if <math>(w,u) \in A(G)</math>. | if <math>(w,u) \in A(G)</math>. | ||
'''3.''' On adjacent vertices in a hypergraph, see '' Partial edge''. | '''3.''' On adjacent vertices in a [[hypergraph]], see ''[[Partial edge]]''. |
Текущая версия от 14:07, 17 ноября 2011
Adjacent vertices — смежные вершины.
1. Two different vertices that incident with the same edge are called adjacent vertices.
2. In a digraph [math]\displaystyle{ \,G = (V,A) }[/math], a vertex [math]\displaystyle{ \,u }[/math] is adjacent to [math]\displaystyle{ \,v }[/math] if [math]\displaystyle{ (u,v) \in A(G) }[/math], and [math]\displaystyle{ \,u }[/math] is adjacent from [math]\displaystyle{ \,w }[/math] if [math]\displaystyle{ (w,u) \in A(G) }[/math].
3. On adjacent vertices in a hypergraph, see Partial edge.