Задача о разбиении: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Создана новая страница размером '''Задача о разбиении''' (''Partitioning problem'') - одна из основных ''<math>\cal NP</math>-полных'...)
 
Нет описания правки
Строка 1: Строка 1:
'''Задача о разбиении''' (''Partitioning problem'') -  
'''Задача о разбиении''' (''[[Partitioning problem]]'') - одна из основных ''<math>\mathcal NP</math>-полных'' задач. Формулируется следующим образом.
одна из основных ''<math>\cal NP</math>-полных'' задач.
Формулируется следующим образом.


Существует ли разбиение данного конечного множества
Существует ли разбиение данного конечного множества элементов, имеющих неотрицательный вес, на два подмножества, равных по суммарному весу составляющих их элементов?
элементов, имеющих неотрицательный вес, на два подмножества, равных по
суммарному весу составляющих их элементов?


См. также ''Задача о вершинном покрытии, Задача о выполнимости, Задача о клике, Задача о неэквивалентности регулярных выражений, Задача о точном покрытии 3-множествами, Задача о трехмерном сочетании, Классы <math>\cal P</math> и <math>\cal NP</math>, Метод локальной замены, Метод построения компонент, Метод сужения задачи, Полиномиальная сводимость (трансформируемость), <math>\cal NP</math>-полная задача, Труднорешаемая задача.''
==См. также==
''[[Задача о вершинном покрытии]], [[Задача о выполнимости]], [[Задача о клике]], [[Задача о неэквивалентности регулярных выражений]], [[Задача о точном покрытии 3-множествами]], [[Задача о трехмерном сочетании]], [[Классы P и NP|Классы <math>\mathcal P</math> и <math>\mathcal NP</math>]], [[Метод локальной замены]], [[Метод построения компонент]], [[Метод сужения задачи]], [[Полиномиальная сводимость (трансформируемость)]], [[NP-Полная задача|<math>\mathcal NP</math>-полная задача]], [[Труднорешаемая задача]].''
==Литература==
==Литература==
[Ахо-Хопкрофт-Ульман],
[Ахо-Хопкрофт-Ульман],


[Касьянов/95]
[Касьянов/95]

Версия от 17:36, 20 октября 2009

Задача о разбиении (Partitioning problem) - одна из основных [math]\displaystyle{ \mathcal NP }[/math]-полных задач. Формулируется следующим образом.

Существует ли разбиение данного конечного множества элементов, имеющих неотрицательный вес, на два подмножества, равных по суммарному весу составляющих их элементов?

См. также

Задача о вершинном покрытии, Задача о выполнимости, Задача о клике, Задача о неэквивалентности регулярных выражений, Задача о точном покрытии 3-множествами, Задача о трехмерном сочетании, Классы [math]\displaystyle{ \mathcal P }[/math] и [math]\displaystyle{ \mathcal NP }[/math], Метод локальной замены, Метод построения компонент, Метод сужения задачи, Полиномиальная сводимость (трансформируемость), [math]\displaystyle{ \mathcal NP }[/math]-полная задача, Труднорешаемая задача.

Литература

[Ахо-Хопкрофт-Ульман],

[Касьянов/95]