F-Stable set: различия между версиями
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
				
		
		
	
| Glk (обсуждение | вклад)  (Новая страница: «'''<math>f</math>-Stable set''' --- <math>f</math>-устойчивое множество.   A set of vertices <math>S \subset V(G)</math> is said to be an ''' <mat…») | ALEXM (обсуждение | вклад)  мНет описания правки | ||
| Строка 6: | Строка 6: | ||
| 1 as <math>f</math>, an <math>f</math>-stable set is an ordinary '' stable set'' (also | 1 as <math>f</math>, an <math>f</math>-stable set is an ordinary '' stable set'' (also | ||
| called an '' independent set''). The ''' <math>f</math>-stability number''', | called an '' independent set''). The ''' <math>f</math>-stability number''', | ||
| denoted by <math>\alpha_{f}(G) = \max\{|S|: \; S\mbox{ is an { | denoted by <math>\alpha_{f}(G) = \max\{|S|: \; S\mbox{ is an } f \mbox{-stable   set}\}</math>. | ||
| set}\}</math>. | |||
Текущая версия от 07:57, 24 сентября 2018
[math]\displaystyle{ f }[/math]-Stable set --- [math]\displaystyle{ f }[/math]-устойчивое множество.
A set of vertices [math]\displaystyle{ S \subset V(G) }[/math] is said to be an [math]\displaystyle{ f }[/math]-stable set, if [math]\displaystyle{ d_{G}(u,v) \geq f(u) + f(v) }[/math] holds for each pair of distinct vertices [math]\displaystyle{ u,v \in S }[/math]. If we take a constant function taking the value 1 as [math]\displaystyle{ f }[/math], an [math]\displaystyle{ f }[/math]-stable set is an ordinary stable set (also called an independent set). The [math]\displaystyle{ f }[/math]-stability number, denoted by [math]\displaystyle{ \alpha_{f}(G) = \max\{|S|: \; S\mbox{ is an } f \mbox{-stable set}\} }[/math].