Cycle isomorphism: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) Нет описания правки |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Cycle isomorphism''' | '''Cycle isomorphism''' — ''[[циклический изоморфизм]].'' | ||
A bijection <math>f</math> between the vertex sets <math>V_{1}</math> and <math>V_{2}</math> of two | A bijection <math>\,f</math> between the [[vertex]] sets <math>\,V_{1}</math> and <math>\,V_{2}</math> of two ''[[sigraph|sigraphs]]'' <math>\,S_{1}</math> and <math>\,S_{2}</math>, respectively, is called <math>\,f</math> '''cycle isomorphism''' (or '''[[weak isomorphism]]''') between <math>\,S_{1}</math> and <math>\,S_{2}</math> if <math>\,f</math> preserves both vertex adjacencies and [[cycle]] signs of <math>\,S_{1}</math> and <math>\,S_{2}</math>. | ||
''sigraphs'' <math>S_{1}</math> and <math>S_{2}</math>, respectively, is called f '''cycle isomorphism''' (or '''weak isomorphism''') between <math>S_{1}</math> and | |||
<math>S_{2}</math> if <math>f</math> preserves both vertex adjacencies and cycle signs of | ==Литература== | ||
<math>S_{1}</math> and <math>S_{2}</math>. | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 12:55, 22 декабря 2021
Cycle isomorphism — циклический изоморфизм.
A bijection [math]\displaystyle{ \,f }[/math] between the vertex sets [math]\displaystyle{ \,V_{1} }[/math] and [math]\displaystyle{ \,V_{2} }[/math] of two sigraphs [math]\displaystyle{ \,S_{1} }[/math] and [math]\displaystyle{ \,S_{2} }[/math], respectively, is called [math]\displaystyle{ \,f }[/math] cycle isomorphism (or weak isomorphism) between [math]\displaystyle{ \,S_{1} }[/math] and [math]\displaystyle{ \,S_{2} }[/math] if [math]\displaystyle{ \,f }[/math] preserves both vertex adjacencies and cycle signs of [math]\displaystyle{ \,S_{1} }[/math] and [math]\displaystyle{ \,S_{2} }[/math].
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.