Convex bipartite graph: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Convex bipartite graph''' --- выпуклый двудольный граф. Let <math>G = (X,Y,E)</math> be a ''bipartite graph''. An ordering of <math>X</mat…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Convex bipartite graph''' --- выпуклый двудольный граф.  
'''Convex bipartite graph''' — ''[[выпуклый двудольный граф]].''


Let <math>G = (X,Y,E)</math> be a ''bipartite graph''. An ordering of <math>X</math> has
Let <math>\,G = (X,Y,E)</math> be a ''[[bipartite graph]]''. An ordering of <math>\,X</math> has
the '''adjacency property''' if for each <math>y \in Y</math> the neighbors of
the '''[[adjacency property]]''' if for each <math>\,y \in Y</math> the neighbors of <math>\,y</math> in <math>\,X</math> are consecutive in the ordering of <math>\,X</math>. A bipartite graph
<math>y</math> in <math>X</math> are consecutive in the ordering of <math>X</math>. A bipartite graph
<math>\,G</math> is called '''convex bipartite''' if there is an ordering of <math>\,X</math> or of <math>\,Y</math> that has the adjacency property. A bipartite graph <math>\,G = (X,Y,E)</math> is '''[[biconvex bipartite graph|biconvex]]''' if there is an ordering of <math>\,X</math> and <math>\,Y</math> with the
<math>G</math> is called '''convex bipartite''' if there is an ordering of <math>X</math> or of <math>Y</math>
adjacency property. Convex graphs contain the ''[[bipartite permutation graph|bipartite permutation graphs]]''.
that has the adjacency property. A bipartite graph <math>G = (X,Y,E)</math> is
 
'''biconvex''' if there is an ordering of <math>X</math> and <math>Y</math> with the
==Литература==
adjacency property. Convex graphs contain the ''bipartite permutation graphs''.
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 12:50, 24 января 2017

Convex bipartite graphвыпуклый двудольный граф.

Let [math]\displaystyle{ \,G = (X,Y,E) }[/math] be a bipartite graph. An ordering of [math]\displaystyle{ \,X }[/math] has the adjacency property if for each [math]\displaystyle{ \,y \in Y }[/math] the neighbors of [math]\displaystyle{ \,y }[/math] in [math]\displaystyle{ \,X }[/math] are consecutive in the ordering of [math]\displaystyle{ \,X }[/math]. A bipartite graph [math]\displaystyle{ \,G }[/math] is called convex bipartite if there is an ordering of [math]\displaystyle{ \,X }[/math] or of [math]\displaystyle{ \,Y }[/math] that has the adjacency property. A bipartite graph [math]\displaystyle{ \,G = (X,Y,E) }[/math] is biconvex if there is an ordering of [math]\displaystyle{ \,X }[/math] and [math]\displaystyle{ \,Y }[/math] with the adjacency property. Convex graphs contain the bipartite permutation graphs.

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.