Alternating chain: различия между версиями
Glk (обсуждение | вклад) (Создана новая страница размером '''Alternating chain''' --- альтернирующая цепь, чередующаяся цепь. Given a chain <math>P = v_{0},v_{1...) |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Alternating chain''' | '''Alternating chain''' — ''[[альтернирующая цепь]], [[чередующаяся цепь]].'' | ||
Given a chain <math>P = v_{0},v_{1},\ldots,v_{k}</math>, <math>P</math> is '''alternating''' | Given a chain <math>P = v_{0},v_{1},\ldots,v_{k}</math>, <math>\,P</math> is '''alternating''' | ||
with respect to a ''matching'' <math>M</math> if each edge in <math>P</math> that does not | with respect to a ''matching'' <math>\,M</math> if each [[edge]] in <math>\,P</math> that does not | ||
belong to <math>M</math> is followed in <math>P</math> by an edge that belongs to <math>M</math>, and | belong to <math>\,M</math> is followed in <math>\,P</math> by an edge that belongs to <math>\,M</math>, and | ||
vice versa. If <math>P</math> is alternating, the index <math>k</math> is odd, and <math>v_{0}, | vice versa. If <math>\,P</math> is alternating, the index <math>\,k</math> is odd, and <math>\,v_{0}, | ||
v_{k} \not \in V(M)</math>, then <math>P</math> is '''augmenting''' with respect to | v_{k} \not \in V(M)</math>, then <math>\,P</math> is '''augmenting''' with respect to | ||
<math>M</math>. A well known result due to Berge states that <math>M</math> is maximum if | <math>\,M</math>. A well known result due to Berge states that <math>\,M</math> is maximum if | ||
and only if <math>M</math> does not admit any augmenting chains. | and only if <math>\,M</math> does not admit any augmenting chains. |
Текущая версия от 17:25, 22 ноября 2011
Alternating chain — альтернирующая цепь, чередующаяся цепь.
Given a chain [math]\displaystyle{ P = v_{0},v_{1},\ldots,v_{k} }[/math], [math]\displaystyle{ \,P }[/math] is alternating with respect to a matching [math]\displaystyle{ \,M }[/math] if each edge in [math]\displaystyle{ \,P }[/math] that does not belong to [math]\displaystyle{ \,M }[/math] is followed in [math]\displaystyle{ \,P }[/math] by an edge that belongs to [math]\displaystyle{ \,M }[/math], and vice versa. If [math]\displaystyle{ \,P }[/math] is alternating, the index [math]\displaystyle{ \,k }[/math] is odd, and [math]\displaystyle{ \,v_{0}, v_{k} \not \in V(M) }[/math], then [math]\displaystyle{ \,P }[/math] is augmenting with respect to [math]\displaystyle{ \,M }[/math]. A well known result due to Berge states that [math]\displaystyle{ \,M }[/math] is maximum if and only if [math]\displaystyle{ \,M }[/math] does not admit any augmenting chains.