Addressing scheme: различия между версиями
Glk (обсуждение | вклад) (Создана новая страница размером '''Addressing scheme''' --- адресующая схема. An '''addressing scheme''' for a ''transformation graph'' <math>{\mathcal G...) |
KEV (обсуждение | вклад) Нет описания правки |
||
(не показана 1 промежуточная версия 1 участника) | |||
Строка 1: | Строка 1: | ||
'''Addressing scheme''' | '''Addressing scheme''' — ''[[адресующая схема]].'' | ||
An '''addressing scheme''' for a ''transformation graph'' <math>{\mathcal G} = (V_{{\mathcal | An '''addressing scheme''' for a ''[[transformation graph]]'' <math>{\mathcal G} = (V_{{\mathcal | ||
G}},\Lambda_{{\mathcal G}})</math> is a total function | G}},\Lambda_{{\mathcal G}})</math> is a total function | ||
Строка 8: | Строка 8: | ||
such that the following two properties hold: | such that the following two properties hold: | ||
(1) for some origin vertex <math>v_{0} \in V_{{\mathcal G}}</math> | (1) for some origin [[vertex]] <math>v_{0} \in V_{{\mathcal G}}</math> | ||
<math>v_{0}\bar{a} = \bar{Id}_{V_{{\mathcal G}}}</math>, | <math>v_{0}\bar{a} = \bar{Id}_{V_{{\mathcal G}}}</math>, | ||
Строка 18: | Строка 18: | ||
the lefthand side denotes functional application, and the righthand | the lefthand side denotes functional application, and the righthand | ||
side denotes multiplication in <math>\bar{Mo}(\Lambda_{{\mathcal G}})</math>. | side denotes multiplication in <math>\bar{Mo}(\Lambda_{{\mathcal G}})</math>. | ||
A transformation graph is '''addressable''' if it admits an addressing | A transformation graph is '''addressable''' if it admits an addressing | ||
scheme. | scheme. |
Текущая версия от 11:31, 8 ноября 2011
Addressing scheme — адресующая схема.
An addressing scheme for a transformation graph [math]\displaystyle{ {\mathcal G} = (V_{{\mathcal G}},\Lambda_{{\mathcal G}}) }[/math] is a total function
[math]\displaystyle{ \bar{a}: V_{{\mathcal G}} \rightarrow \bar{Mo}(\Lambda_{{\mathcal G}}), }[/math]
such that the following two properties hold:
(1) for some origin vertex [math]\displaystyle{ v_{0} \in V_{{\mathcal G}} }[/math] [math]\displaystyle{ v_{0}\bar{a} = \bar{Id}_{V_{{\mathcal G}}} }[/math],
(2) for all transformations [math]\displaystyle{ \lambda \in \Lambda_{{\mathcal G}} }[/math] and all vertices [math]\displaystyle{ v \in Domain(\lambda) }[/math]
[math]\displaystyle{ (\lambda)\bar{a} = (v\bar{a}) \cdot \lambda; }[/math]
the lefthand side denotes functional application, and the righthand side denotes multiplication in [math]\displaystyle{ \bar{Mo}(\Lambda_{{\mathcal G}}) }[/math].
A transformation graph is addressable if it admits an addressing scheme.