Задача о точном покрытии 3-множествами: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Создана новая страница размером '''Задача о точном покрытии 3-множествами'''(''3-Set exact cover problem'') - одна из основн...) |
KEV (обсуждение | вклад) Нет описания правки |
||
(не показаны 3 промежуточные версии этого же участника) | |||
Строка 1: | Строка 1: | ||
'''Задача о точном покрытии 3-множествами'''(''3-Set exact cover problem'') | '''Задача о точном покрытии 3-множествами'''(''[[3-Set exact cover problem]]'') — одна из основных ''<math>\mathcal NP</math>-полных'' задач. | ||
одна из основных ''<math>\ | |||
Формулируется следующим образом. | Формулируется следующим образом. | ||
Верно ли, что заданное семейство <math>C</math> | Верно ли, что заданное семейство <math>C</math> трехэлементных подмножеств заданного конечного множества <math>X</math> такого, что <math>\mid X\mid =3q</math> для некоторого натурального <math>q</math>, содержит ''точное покрытие'' множества <math>X</math>, т.е. такое подсемейство | ||
трехэлементных | |||
подмножеств заданного конечного множества <math>X</math> | |||
такого, что <math>\mid X\mid =3q</math> для некоторого натурального <math>q</math>, | |||
содержит ''точное покрытие'' множества <math>X</math>, т.е. такое подсемейство | |||
<math>C'\subseteq C</math>, что каждый элемент из <math>X</math> содержится ровно в одном | <math>C'\subseteq C</math>, что каждый элемент из <math>X</math> содержится ровно в одном | ||
элементе из <math>C</math>? | элементе из <math>C</math>? | ||
См. также ''Задача о вершинном покрытии, Задача о выполнимости, Задача о клике, Задача о неэквивалентности регулярных выражений, Задача о разбиении, Задача о трехмерном | ==См. также== | ||
* ''[[Задача о вершинном покрытии]],'' | |||
* ''[[Задача о выполнимости]],'' | |||
* ''[[Задача о клике]],'' | |||
* ''[[Задача о неэквивалентности регулярных выражений]],'' | |||
* ''[[Задача о разбиении]],'' | |||
* ''[[Задача о трехмерном сочетании]],'' | |||
* ''[[Классы P и NP|Классы <math>\mathcal P</math> и <math>\mathcal NP</math>]],'' | |||
* ''[[Метод локальной замены]],'' | |||
* ''[[Метод построения компонент]],'' | |||
* ''[[Метод сужения задачи]],'' | |||
* ''[[Полиномиальная сводимость (трансформируемость)]],'' | |||
* ''[[NP-Полная задача|<math>\mathcal NP</math>-полная задача]],'' | |||
* ''[[Труднорешаемая задача]].'' | |||
==Литература== | ==Литература== | ||
* Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979. | |||
* Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995. |
Текущая версия от 15:51, 11 февраля 2011
Задача о точном покрытии 3-множествами(3-Set exact cover problem) — одна из основных [math]\displaystyle{ \mathcal NP }[/math]-полных задач. Формулируется следующим образом.
Верно ли, что заданное семейство [math]\displaystyle{ C }[/math] трехэлементных подмножеств заданного конечного множества [math]\displaystyle{ X }[/math] такого, что [math]\displaystyle{ \mid X\mid =3q }[/math] для некоторого натурального [math]\displaystyle{ q }[/math], содержит точное покрытие множества [math]\displaystyle{ X }[/math], т.е. такое подсемейство [math]\displaystyle{ C'\subseteq C }[/math], что каждый элемент из [math]\displaystyle{ X }[/math] содержится ровно в одном элементе из [math]\displaystyle{ C }[/math]?
См. также
- Задача о вершинном покрытии,
- Задача о выполнимости,
- Задача о клике,
- Задача о неэквивалентности регулярных выражений,
- Задача о разбиении,
- Задача о трехмерном сочетании,
- Классы [math]\displaystyle{ \mathcal P }[/math] и [math]\displaystyle{ \mathcal NP }[/math],
- Метод локальной замены,
- Метод построения компонент,
- Метод сужения задачи,
- Полиномиальная сводимость (трансформируемость),
- [math]\displaystyle{ \mathcal NP }[/math]-полная задача,
- Труднорешаемая задача.
Литература
- Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979.
- Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.