Метод локальной замены: различия между версиями
KEV (обсуждение | вклад) Нет описания правки |
KEV (обсуждение | вклад) Нет описания правки |
||
(не показана 1 промежуточная версия этого же участника) | |||
Строка 1: | Строка 1: | ||
'''Метод локальной замены''' (''[[Local replacement method]]'') | '''Метод локальной замены''' (''[[Local replacement method]]'') — | ||
один из трех общих методов доказательства, которые часто | один из трех общих методов доказательства, которые часто | ||
встречаются и могут подсказать путь к доказательству | встречаются и могут подсказать путь к доказательству | ||
<math>\mathcal NP</math>-полноты новой задачи. Другие два | <math>\mathcal NP</math>-полноты новой задачи. Другие два — это ''[[Метод сужения задачи]]'' и ''[[Метод построения компонент|Метод построения компоненты]]''. | ||
'''Метод локальной замены''' состоит в том, что выбирается некоторое | '''Метод локальной замены''' состоит в том, что выбирается некоторое | ||
характерное свойство известной [[NP- | характерное свойство известной [[NP-Полная задача|<math>{\mathcal NP}</math>-полной задачи]], с | ||
помощью него образуется семейство основных модулей, а соответствующие индивидуальные задачи заданной задачи получаются путем единообразной замены каждого основного модуля некоторой другой структурой. | помощью него образуется семейство основных модулей, а соответствующие индивидуальные задачи заданной задачи получаются путем единообразной замены каждого основного модуля некоторой другой структурой. | ||
Строка 12: | Строка 12: | ||
==См. также== | ==См. также== | ||
''[[Задача о вершинном покрытии]], [[Задача о выполнимости]], [[Задача о клике]], [[Задача о неэквивалентности регулярных выражений]], [[Задача о разбиении]], [[Задача о точном покрытии 3-множествами]], [[Задача о трехмерном сочетании]], [[Классы P и NP|Классы <math>\mathcal P</math> и <math>\mathcal NP</math>]], [[Полиномиальная сводимость (трансформируемость)]], [[NP-Полная задача|<math>\mathcal NP</math>-Полная задача]], [[Труднорешаемая задача]].'' | * ''[[Задача о вершинном покрытии]],'' | ||
* ''[[Задача о выполнимости]],'' | |||
* ''[[Задача о клике]],'' | |||
* ''[[Задача о неэквивалентности регулярных выражений]],'' | |||
* ''[[Задача о разбиении]],'' | |||
* ''[[Задача о точном покрытии 3-множествами]],'' | |||
* ''[[Задача о трехмерном сочетании]],'' | |||
* ''[[Классы P и NP|Классы <math>\mathcal P</math> и <math>\mathcal NP</math>]],'' | |||
* ''[[Полиномиальная сводимость (трансформируемость)]],'' | |||
* ''[[NP-Полная задача|<math>\mathcal NP</math>-Полная задача]],'' | |||
* ''[[Труднорешаемая задача]].'' | |||
==Литература== | ==Литература== | ||
* Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. — М.: Мир, 1982. | |||
*Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995. |
Текущая версия от 14:12, 11 мая 2011
Метод локальной замены (Local replacement method) — один из трех общих методов доказательства, которые часто встречаются и могут подсказать путь к доказательству [math]\displaystyle{ \mathcal NP }[/math]-полноты новой задачи. Другие два — это Метод сужения задачи и Метод построения компоненты.
Метод локальной замены состоит в том, что выбирается некоторое характерное свойство известной [math]\displaystyle{ {\mathcal NP} }[/math]-полной задачи, с помощью него образуется семейство основных модулей, а соответствующие индивидуальные задачи заданной задачи получаются путем единообразной замены каждого основного модуля некоторой другой структурой.
Сводимости, возникающие при доказательстве методом локальной замены, достаточно нетривиальны, чтобы их всегда можно было с гарантией представить в стандартном виде, однако они остаются относительно несложными.
См. также
- Задача о вершинном покрытии,
- Задача о выполнимости,
- Задача о клике,
- Задача о неэквивалентности регулярных выражений,
- Задача о разбиении,
- Задача о точном покрытии 3-множествами,
- Задача о трехмерном сочетании,
- Классы [math]\displaystyle{ \mathcal P }[/math] и [math]\displaystyle{ \mathcal NP }[/math],
- Полиномиальная сводимость (трансформируемость),
- [math]\displaystyle{ \mathcal NP }[/math]-Полная задача,
- Труднорешаемая задача.
Литература
- Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. — М.: Мир, 1982.
- Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.