Задача о выполнимости: различия между версиями
KEV (обсуждение | вклад) Нет описания правки |
KEV (обсуждение | вклад) Нет описания правки |
||
(не показана 1 промежуточная версия этого же участника) | |||
Строка 1: | Строка 1: | ||
'''Задача о выполнимости''' (''[[Satisfiability problem]]'') | '''Задача о выполнимости''' (''[[Satisfiability problem]]'') — одна из основных [[NP-Полная задача|''<math>\mathcal NP</math>-полных'' задач]]. Формулируется следующим образом. | ||
У с л о в и е. Задано множество булевых переменных <math>V</math> и правильно построенное булево выражение <math>E</math> над <math>V</math>. | У с л о в и е. Задано множество булевых переменных <math>V</math> и правильно построенное булево выражение <math>E</math> над <math>V</math>. | ||
Строка 7: | Строка 7: | ||
Можно показать, что даже при более жестких ограничениях на вид формулы задача выполнимости булевых формул также <math>{\mathcal NP}</math>-полна. | Можно показать, что даже при более жестких ограничениях на вид формулы задача выполнимости булевых формул также <math>{\mathcal NP}</math>-полна. | ||
Булева формула находится в ''конъюнктивной нормальной форме'' | Булева формула находится в ''конъюнктивной нормальной форме'' (КНФ), если она представляет собой произведение сумм литералов, где каждый ''литерал'' имеет вид <math>x</math> или <math>\lnot x</math> для некоторой переменной <math>x</math>. | ||
Задача выполнимости формул, находящихся в КНФ, <math>{\mathcal NP}</math>-полна. | Задача выполнимости формул, находящихся в КНФ, <math>{\mathcal NP}</math>-полна. | ||
Строка 15: | Строка 15: | ||
Для <math>k=1</math> и 2 известны ''[[полиномиальный алгоритм|полиномиальные алгоритмы]]'', проверяющие <math>k</math>-выполнимость, т.е. ''1-ВЫП, 2-ВЫП'' <math>\in \mathcal NP</math>. | Для <math>k=1</math> и 2 известны ''[[полиномиальный алгоритм|полиномиальные алгоритмы]]'', проверяющие <math>k</math>-выполнимость, т.е. ''1-ВЫП, 2-ВЫП'' <math>\in \mathcal NP</math>. | ||
Ситуация изменяется при <math>k=3</math>, поскольку задача о 3-выполнимости является <math>{\ | Ситуация изменяется при <math>k=3</math>, поскольку задача о 3-выполнимости является <math>{\mathcal NP}</math>- полной. | ||
==См. также== | ==См. также== | ||
''[[Задача о вершинном покрытии]], [[Задача о клике]], [[Задача о неэквивалентности регулярных выражений]], [[Задача о разбиении]], [[Задача о точном покрытии 3-множествами]], [[Задача о трехмерном сочетании]], [[Классы P и NP|Классы <math>\mathcal P</math> и <math>\mathcal NP</math>]], [[Метод локальной замены]], [[Метод построения компонент]], [[Метод сужения задачи]], [[Полиномиальная сводимость (трансформируемость)]], [[NP-Полная задача|<math>\mathcal NP</math>-полная задача]], [[Труднорешаемая задача]].'' | * ''[[Задача о вершинном покрытии]],'' | ||
* ''[[Задача о клике]],'' | |||
* ''[[Задача о неэквивалентности регулярных выражений]],'' | |||
* ''[[Задача о разбиении]],'' | |||
* ''[[Задача о точном покрытии 3-множествами]],'' | |||
* ''[[Задача о трехмерном сочетании]],'' | |||
* ''[[Классы P и NP|Классы <math>\mathcal P</math> и <math>\mathcal NP</math>]],'' | |||
* ''[[Метод локальной замены]],'' | |||
* ''[[Метод построения компонент]],'' | |||
* ''[[Метод сужения задачи]],'' | |||
* ''[[Полиномиальная сводимость (трансформируемость)]],'' | |||
* ''[[NP-Полная задача|<math>\mathcal NP</math>-полная задача]],'' | |||
* ''[[Труднорешаемая задача]].'' | |||
==Литература== | ==Литература== | ||
* Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979. | |||
* Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995. |
Текущая версия от 13:57, 11 февраля 2011
Задача о выполнимости (Satisfiability problem) — одна из основных [math]\displaystyle{ \mathcal NP }[/math]-полных задач. Формулируется следующим образом.
У с л о в и е. Задано множество булевых переменных [math]\displaystyle{ V }[/math] и правильно построенное булево выражение [math]\displaystyle{ E }[/math] над [math]\displaystyle{ V }[/math].
В о п р о с. Существует ли набор значений переменных множества [math]\displaystyle{ V }[/math], при котором выражение [math]\displaystyle{ E }[/math] выполнено, т.е. принимает значение "истина"?
Можно показать, что даже при более жестких ограничениях на вид формулы задача выполнимости булевых формул также [math]\displaystyle{ {\mathcal NP} }[/math]-полна.
Булева формула находится в конъюнктивной нормальной форме (КНФ), если она представляет собой произведение сумм литералов, где каждый литерал имеет вид [math]\displaystyle{ x }[/math] или [math]\displaystyle{ \lnot x }[/math] для некоторой переменной [math]\displaystyle{ x }[/math]. Задача выполнимости формул, находящихся в КНФ, [math]\displaystyle{ {\mathcal NP} }[/math]-полна.
Говорят, что булева формула находится в [math]\displaystyle{ k }[/math]-конъюнктивной нормальной форме ([math]\displaystyle{ k }[/math]-КНФ), если она представляет собой произведение сумм, состоящих не более чем из [math]\displaystyle{ k }[/math] литералов. Задача [math]\displaystyle{ k }[/math]-выполнимости ([math]\displaystyle{ k }[/math]-ВЫП) состоит в выяснении выполнимости формулы, находящейся в [math]\displaystyle{ k }[/math]-КНФ.
Для [math]\displaystyle{ k=1 }[/math] и 2 известны полиномиальные алгоритмы, проверяющие [math]\displaystyle{ k }[/math]-выполнимость, т.е. 1-ВЫП, 2-ВЫП [math]\displaystyle{ \in \mathcal NP }[/math]. Ситуация изменяется при [math]\displaystyle{ k=3 }[/math], поскольку задача о 3-выполнимости является [math]\displaystyle{ {\mathcal NP} }[/math]- полной.
См. также
- Задача о вершинном покрытии,
- Задача о клике,
- Задача о неэквивалентности регулярных выражений,
- Задача о разбиении,
- Задача о точном покрытии 3-множествами,
- Задача о трехмерном сочетании,
- Классы [math]\displaystyle{ \mathcal P }[/math] и [math]\displaystyle{ \mathcal NP }[/math],
- Метод локальной замены,
- Метод построения компонент,
- Метод сужения задачи,
- Полиномиальная сводимость (трансформируемость),
- [math]\displaystyle{ \mathcal NP }[/math]-полная задача,
- Труднорешаемая задача.
Литература
- Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979.
- Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.