Гамильтонов граф: различия между версиями
Перейти к навигации
Перейти к поиску
KEV (обсуждение | вклад) Нет описания правки |
KEV (обсуждение | вклад) Нет описания правки |
||
(не показаны 4 промежуточные версии этого же участника) | |||
Строка 1: | Строка 1: | ||
'''Гамильтонов граф''' (''[[Hamiltonian graph]]'') | '''Гамильтонов граф''' (''[[Hamiltonian graph]]'') — [[граф]], содержащий ''[[гамильтонов цикл]]'' или ''[[гамильтонова цепь|гамильтонову цепь]]'', соединяющую некоторую пару [[вершина|вершин]]. К настоящему времени известны лишь достаточные условия гамильтоновости графов, принадлежащие В.Хваталу, О.Оре, Г.Дираку, Х.Уитни и др. Примерами гамильтоновых графов служат [[полный граф|полные графы]], [[граф каркасов|графы каркасов]], графы правильных многогранников. | ||
[[Файл:Hamiltonian graph.png|700px]] | |||
Слово "гамильтонов" в этом и других терминах связано с именем ирландского математика У.Гамильтона, который в 1859 г. предложил головоломку "Кругосветное путешествие", где требовалось обойти по | Слово "гамильтонов" в этом и других терминах связано с именем ирландского математика У.Гамильтона, который в 1859 г. предложил головоломку "Кругосветное путешествие", где требовалось обойти по | ||
[[ | [[ребро|ребрам]] все [[вершина|вершины]] додекаэдра. | ||
==Литература== | ==Литература== | ||
* Зыков А.А. Теория конечных графов. — Новосибирск: Наука. Сиб. отд-ние, 1969. | |||
* Лекции по теории графов / В.А.Емеличев, О.И.Мельников, В.И.Сарванов, Р.И.Тышкевич. — М.: Наука, 1990. | |||
* Харари Ф. Теория графов. — М.: Мир, 1973. |
Текущая версия от 14:06, 2 декабря 2010
Гамильтонов граф (Hamiltonian graph) — граф, содержащий гамильтонов цикл или гамильтонову цепь, соединяющую некоторую пару вершин. К настоящему времени известны лишь достаточные условия гамильтоновости графов, принадлежащие В.Хваталу, О.Оре, Г.Дираку, Х.Уитни и др. Примерами гамильтоновых графов служат полные графы, графы каркасов, графы правильных многогранников.
Слово "гамильтонов" в этом и других терминах связано с именем ирландского математика У.Гамильтона, который в 1859 г. предложил головоломку "Кругосветное путешествие", где требовалось обойти по
ребрам все вершины додекаэдра.
Литература
- Зыков А.А. Теория конечных графов. — Новосибирск: Наука. Сиб. отд-ние, 1969.
- Лекции по теории графов / В.А.Емеличев, О.И.Мельников, В.И.Сарванов, Р.И.Тышкевич. — М.: Наука, 1990.
- Харари Ф. Теория графов. — М.: Мир, 1973.