Алгоритм Штрассена: различия между версиями
Перейти к навигации
Перейти к поиску
KEV (обсуждение | вклад) Нет описания правки |
KEV (обсуждение | вклад) Нет описания правки |
||
(не показана 1 промежуточная версия этого же участника) | |||
Строка 1: | Строка 1: | ||
'''Алгоритм Штрассена''' (''[[ | '''Алгоритм Штрассена''' (''[[V.Strassen]], 1968'') — [[алгоритм]] умножения двух <math>(2 \times 2)</math>-матриц с элементами из произвольного кольца, в котором достаточно семи умножений. Рекурсивно применяя этот метод, можно умножить две <math>(n \times n)</math>-матрицы за время <math>O(n^{\log 7})</math>. | ||
==Литература== | ==Литература== | ||
* Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979. |
Текущая версия от 13:44, 18 ноября 2010
Алгоритм Штрассена (V.Strassen, 1968) — алгоритм умножения двух [math]\displaystyle{ (2 \times 2) }[/math]-матриц с элементами из произвольного кольца, в котором достаточно семи умножений. Рекурсивно применяя этот метод, можно умножить две [math]\displaystyle{ (n \times n) }[/math]-матрицы за время [math]\displaystyle{ O(n^{\log 7}) }[/math].
Литература
- Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979.