Гипотеза Брэттона: различия между версиями
Glk (обсуждение | вклад) Нет описания правки |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Гипотеза Брэттона''' (''Conjecture of Bratton'') - | '''Гипотеза Брэттона''' (''[[Conjecture of Bratton]]'') - У всякого [[сильно связный орграф|сильно связного графа]] без [[петля|петель]] с <math>m</math> [[дуга|дугами]] и <math>n</math> [[вершина|вершинами]] ''[[диаметр]]'' больше или равен <math>\delta(m,n)-1</math>, где <math>\delta(m,n)</math> определяется следующим образом. Пусть <math>q</math> --- частное, а <math>r</math> --- остаток от деления <math>n-1</math> на <math>\nu = m-n+1</math>. Тогда | ||
У всякого сильно связного графа без петель с <math>m</math> дугами и <math>n</math> | |||
вершинами ''диаметр'' больше или равен <math>\delta(m,n)-1</math>, где | |||
<math>\delta(m,n)</math> определяется следующим образом. Пусть <math>q</math> --- | |||
частное, а <math>r</math> --- остаток от деления <math>n-1</math> на <math>\nu = m-n+1</math>. Тогда | |||
<math>\delta(m,n) = \left\{ \begin{array}{l} 2q\mbox{ при } r = 0, \\ | <math>\delta(m,n) = \left\{ \begin{array}{l} 2q\mbox{ при } r = 0, \\ | ||
Строка 9: | Строка 5: | ||
\end{array} \right.</math> | \end{array} \right.</math> | ||
Гипотеза решена М.Гольдбергом в 1966 г. (См. Докл. АН СССР, Т. 170, N 4, 1966). | Гипотеза решена М.Гольдбергом в 1966 г. (См. [[Докл. АН СССР, Т. 170, N 4, 1966]]). | ||
==Литература== | ==Литература== | ||
[Берж] | [Берж] |
Версия от 14:44, 8 октября 2009
Гипотеза Брэттона (Conjecture of Bratton) - У всякого сильно связного графа без петель с [math]\displaystyle{ m }[/math] дугами и [math]\displaystyle{ n }[/math] вершинами диаметр больше или равен [math]\displaystyle{ \delta(m,n)-1 }[/math], где [math]\displaystyle{ \delta(m,n) }[/math] определяется следующим образом. Пусть [math]\displaystyle{ q }[/math] --- частное, а [math]\displaystyle{ r }[/math] --- остаток от деления [math]\displaystyle{ n-1 }[/math] на [math]\displaystyle{ \nu = m-n+1 }[/math]. Тогда
[math]\displaystyle{ \delta(m,n) = \left\{ \begin{array}{l} 2q\mbox{ при } r = 0, \\ 2q+1\mbox{ при } r = 1, \\ 2q+2\mbox{ при } r \geq 2. \end{array} \right. }[/math]
Гипотеза решена М.Гольдбергом в 1966 г. (См. Докл. АН СССР, Т. 170, N 4, 1966).
Литература
[Берж]