Dag of control flow graph: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Dag of control flow graph''' --- каркас уграфа. A '''dag''' of a ''cf-graph''<math>G</math> with an initial node <math>p</math> is an acyclic cf-grap…») |
KEV (обсуждение | вклад) Нет описания правки |
||
(не показана 1 промежуточная версия этого же участника) | |||
Строка 1: | Строка 1: | ||
'''Dag of control flow graph''' | '''Dag of control flow graph''' — ''[[каркас уграфа]].'' | ||
A '''dag''' of a ''cf-graph''<math>G</math> with an initial node <math>p</math> is an acyclic | A '''[[DAG|dag]]''' of a ''cf-graph''<math>\,G</math> with an [[initial node]] <math>\,p</math> is an acyclic cf-graph <math>\,D</math> with the initial node <math>\,p</math> such that <math>\,V(G)=V(D)</math>, <math>\,A(D)\subseteq A(G)</math> and for any arc <math>u\in A(G)\backslash A(D)</math> the [[graph, undirected graph, nonoriented graph|graph]] <math>\,D \bigcup \{u\}</math> has a [[cycle]]. That is, <math>\,D</math> is a maximal [[acyclic graph|acyclic]] [[subflowgraph]]. | ||
cf-graph <math>D</math> with the initial node <math>p</math> such that | |||
<math>V(G)=V(D)</math>, <math>A(D)\subseteq A(G)</math> and for any arc <math>u\in A(G)\backslash A(D)</math> the | ==Литература== | ||
graph <math>D \bigcup \{u\}</math> has a cycle. That is, <math>D</math> is a maximal acyclic | *Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. | ||
[[Категория:Основные термины]] |
Текущая версия от 13:15, 27 ноября 2024
Dag of control flow graph — каркас уграфа.
A dag of a cf-graph[math]\displaystyle{ \,G }[/math] with an initial node [math]\displaystyle{ \,p }[/math] is an acyclic cf-graph [math]\displaystyle{ \,D }[/math] with the initial node [math]\displaystyle{ \,p }[/math] such that [math]\displaystyle{ \,V(G)=V(D) }[/math], [math]\displaystyle{ \,A(D)\subseteq A(G) }[/math] and for any arc [math]\displaystyle{ u\in A(G)\backslash A(D) }[/math] the graph [math]\displaystyle{ \,D \bigcup \{u\} }[/math] has a cycle. That is, [math]\displaystyle{ \,D }[/math] is a maximal acyclic subflowgraph.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.