Аноним

NP-Полная задача: различия между версиями

Материал из WikiGrapp
нет описания правки
Нет описания правки
Нет описания правки
 
(не показана 1 промежуточная версия этого же участника)
Строка 3: Строка 3:
рассматривается, то используется термин ''<math>\mathcal NP</math>-трудная'' задача.
рассматривается, то используется термин ''<math>\mathcal NP</math>-трудная'' задача.


Найдется немного научных терминов, так быстро завоевавших широкую известность, как понятие "<math>{\mathcal NP}</math>-полная задача". За короткий промежуток времени с момента введения этого понятия С.Куком в начале 70-х годов оно стало символом тех трудностей, которые встречаются на пути создания достаточно общих и эффективных методов решения задач дискретной математики.
Найдется немного научных терминов, так быстро завоевавших широкую известность, как понятие "<math>{\mathcal NP}</math>-полная задача". За короткий промежуток времени с момента введения этого понятия С. Куком в начале 70-х годов оно стало символом тех трудностей, которые встречаются на пути создания достаточно общих и эффективных методов решения задач дискретной математики.
<math>{\mathcal NP}</math>-полные задачи являются "самыми трудными" в классе <math>{\mathcal NP}.</math>
<math>{\mathcal NP}</math>-полные задачи являются "самыми трудными" в классе <math>{\mathcal NP}.</math>
Если какая-нибудь <math>{\mathcal NP}</math>-полная задача может быть решена за полиномиальное время, то и любая задача из <math>{\mathcal NP}</math> полиномиально разрешима, а если какая-то задача из <math>{\mathcal NP}</math> труднорешаема, то и любая <math>{\mathcal NP}</math>-полная задача является труднорешаемой. При этом, для того чтобы доказать <math>{\mathcal NP}</math>-полноту некоторой задачи из <math>{\mathcal NP},</math> достаточно показать, что какая-то из
Если какая-нибудь <math>{\mathcal NP}</math>-полная задача может быть решена за полиномиальное время, то и любая задача из <math>{\mathcal NP}</math> полиномиально разрешима, а если какая-то задача из <math>{\mathcal NP}</math> труднорешаема, то и любая <math>{\mathcal NP}</math>-полная задача является труднорешаемой. При этом, для того чтобы доказать <math>{\mathcal NP}</math>-полноту некоторой задачи из <math>{\mathcal NP},</math> достаточно показать, что какая-то из
Строка 10: Строка 10:
Вопрос о взаимоотношении классов <math>{\mathcal P}</math> и <math>{\mathcal NP}</math> имеет
Вопрос о взаимоотношении классов <math>{\mathcal P}</math> и <math>{\mathcal NP}</math> имеет
фундаментальное значение, но все еще открыт. Известно, что
фундаментальное значение, но все еще открыт. Известно, что
<math>{\mathcal P}\subseteq {\mathcal NP}</math> и если <math>L\in {\mathcal NP},</math> то существует такой полином <math>\,p(n)</math> и ''ДМТ'' <math>\,M,</math> что <math>\,L</math> допускается на <math>\,M</math> с [[временная сложность|временной сложностью]] <math>\,O(2^{p(n)}).</math> Однако до сих пор не доказано, содержит класс <math>{\mathcal NP}</math> труднорешаемые задачи или нет, т.е. <math>{\mathcal NP\setminus P}\neq \emptyset</math> или <math>{\mathcal NP=P}.</math> Вместе с тем известно, что в предположении <math>{\mathcal P}\neq {\mathcal NP}</math> класс <math>{\mathcal NP}</math> не просто содержит два непересекающихся подкласса: класс <math>{\mathcal P}</math> и класс <math>{\mathcal NP}</math>-полных задач, а также должен включать задачи, не принадлежащие ни одному из этих подклассов (т.е. при <math>{\mathcal P}\neq
<math>{\mathcal P}\subseteq {\mathcal NP}</math> и если <math>L\in {\mathcal NP},</math> то существует такой полином <math>\,p(n)</math> и ''ДМТ'' <math>\,M,</math> что <math>\,L</math> допускается на <math>\,M</math> с [[временная сложность|временной сложностью]] <math>\,O(2^{p(n)}).</math> Однако до сих пор не доказано, содержит класс <math>{\mathcal NP}</math> труднорешаемые задачи или нет, т. е. <math>{\mathcal NP\setminus P}\neq \emptyset</math> или <math>{\mathcal NP=P}.</math> Вместе с тем известно, что в предположении <math>{\mathcal P}\neq {\mathcal NP}</math> класс <math>{\mathcal NP}</math> не просто содержит два непересекающихся подкласса: класс <math>{\mathcal P}</math> и класс <math>{\mathcal NP}</math>-полных задач, а также должен включать задачи, не принадлежащие ни одному из этих подклассов (т.е. при <math>{\mathcal P}\neq
{\mathcal NP}</math> должны существовать задачи из <math>{\mathcal NP},</math> которые
{\mathcal NP}</math> должны существовать задачи из <math>{\mathcal NP},</math> которые
неразрешимы за полиномиальное время и не являются <math>{\mathcal NP}</math>-полными).
неразрешимы за полиномиальное время и не являются <math>{\mathcal NP}</math>-полными).
Строка 26: Строка 26:


(''[[Множество вершин, разрезающих контуры]]''). Имеет ли данный
(''[[Множество вершин, разрезающих контуры]]''). Имеет ли данный
[[ориентированный граф]] <math>\,k</math>-элементное множество вершин, ''разрезающих'' все его контуры, т.е. содержащих хотя бы по одной вершине каждого из них?
[[ориентированный граф]] <math>\,k</math>-элементное множество вершин, ''разрезающих'' все его контуры, т. е. содержащих хотя бы по одной вершине каждого из них?


(''[[Множество дуг, разрезающих контуры]]''). Имеет ли данный
(''[[Множество дуг, разрезающих контуры]]''). Имеет ли данный
ориентированный граф <math>\,k</math>-элементное множество дуг,
ориентированный граф <math>\,k</math>-элементное множество дуг,
''разрезающих'' все его контуры, т.е. содержащих хотя бы по одной
''разрезающих'' все его контуры, т. е. содержащих хотя бы по одной
дуге каждого из них?
дуге каждого из них?


Строка 49: Строка 49:
[[степень вершины|степень]] не более <math>\,k</math>?
[[степень вершины|степень]] не более <math>\,k</math>?


(''[[Минимальный эквивалентный по  достижимости  ориентированный
(''Минимальный эквивалентный по  достижимости  ориентированный'' ''граф).'' Можно ли удалить из данного ориентированного графа часть [[дуга|дуг]] так, чтобы отношение [[достижимая вершина|достижимости]] между вершинами
граф]]''). Можно ли удалить из данного ориентированного графа
часть [[дуга|дуг]] так, чтобы отношение [[достижимая вершина|достижимости]] между вершинами
не изменилось, но результирующий граф содержал бы не более
не изменилось, но результирующий граф содержал бы не более
<math>\,k</math> дуг.
<math>\,k</math> дуг.
Строка 103: Строка 101:


* Касьянов В.Н.  Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.
* Касьянов В.Н.  Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.
* Касьянов В.Н., Касьянова Е.В. Теория вычислений. — Новосибирск: ИПЦ НГУ, 2018.