Arrangeable graph: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Arrangeable graph''' --- аранжируемый граф. A ''cf-graph''is called '''arrangeable''' if its ''arrangement''exists and '''nonarrangeable''' other…») |
KVN (обсуждение | вклад) Нет описания правки |
||
(не показаны 2 промежуточные версии 2 участников) | |||
Строка 1: | Строка 1: | ||
'''Arrangeable graph''' | '''Arrangeable graph''' — ''[[аранжируемый граф]].'' | ||
A ''cf-graph''is called '''arrangeable''' if its ''arrangement''exists and | A ''[[cf-Graph|cf-graph]]'' is called '''arrangeable''' if its ''[[arrangement]]'' exists and | ||
'''nonarrangeable''' otherwise. | '''nonarrangeable''' otherwise. | ||
Every arc of an arrangeable graph <math>G</math> is either forward or backward arc. | Every [[arc]] of an arrangeable [[graph, undirected graph, nonoriented graph|graph]] <math>G</math> is either forward or backward arc. | ||
An arc of <math>G</math> is called a '''backward''' arc if it is | An arc of <math>G</math> is called a '''backward''' arc if it is an ''<math>F</math>-inverse arc'' for an arrangement of <math>G</math> and a '''forward''' arc if it is an ''<math>F</math>-direct arc'' for an arrangement of <math>G</math>. | ||
an ''<math>F</math>-inverse arc''for an arrangement of <math>G</math> and | |||
a '''forward''' arc if it is an ''<math>F</math>-direct arc''for | |||
an arrangement of <math>G</math>. | |||
A '''depth''' of an arrangeable graph <math>G</math> is defined | A '''depth''' of an arrangeable graph <math>G</math> is defined as the depth of an arrangement of <math>G</math>. | ||
as the depth of an arrangement of <math>G</math>. | |||
==Литература== | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. | |||
[[Категория: Сводимые и регуляризуемые графы]] |
Текущая версия от 10:32, 22 октября 2019
Arrangeable graph — аранжируемый граф.
A cf-graph is called arrangeable if its arrangement exists and nonarrangeable otherwise.
Every arc of an arrangeable graph [math]\displaystyle{ G }[/math] is either forward or backward arc. An arc of [math]\displaystyle{ G }[/math] is called a backward arc if it is an [math]\displaystyle{ F }[/math]-inverse arc for an arrangement of [math]\displaystyle{ G }[/math] and a forward arc if it is an [math]\displaystyle{ F }[/math]-direct arc for an arrangement of [math]\displaystyle{ G }[/math].
A depth of an arrangeable graph [math]\displaystyle{ G }[/math] is defined as the depth of an arrangement of [math]\displaystyle{ G }[/math].
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.