Critical path: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Critical path''' --- критический путь. An important parameter in any ''PERT'' digraph is the length of the longest path from the start to the ter…») |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Critical path''' | '''Critical path''' — ''[[критический путь]].'' | ||
An important parameter in any ''PERT'' digraph is the length of the | An important parameter in any ''PERT'' digraph is the length of the longest [[path]] from the start to the termination [[vertex]]. Such a path is called a '''critical path''', and its length represents the shortest time within which the overall task can be completed. For this reason the analysis is sometimes called '''CPM ([[Critical path method]])'''. | ||
longest path from the start to the termination vertex. Such a path is | |||
called a '''critical path''', and its length represents the shortest | ==Литература== | ||
time within which the overall task can be completed. For this reason | |||
the analysis is sometimes called '''CPM (Critical path method)'''. | * Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 12:03, 22 февраля 2018
Critical path — критический путь.
An important parameter in any PERT digraph is the length of the longest path from the start to the termination vertex. Such a path is called a critical path, and its length represents the shortest time within which the overall task can be completed. For this reason the analysis is sometimes called CPM (Critical path method).
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.