Connected to relation: различия между версиями
Glk (обсуждение | вклад)  (Новая страница: «'''Connected to relation''' --- отношение связности ''к'', (достижимость) в гиперграфе.   The relation '''connected to''', …»)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Connected to relation'''   | '''Connected to relation''' — ''[[отношение связности ''к'']], [[(достижимость) в гиперграфе]].''   | ||
The relation '''connected to''', which is denoted by the symbol  | The relation '''connected to''', which is denoted by the symbol  | ||
<math>\succ</math>, is defined for a given subset <math>R</math> of nodes and a node <math>y</math>;  | <math>\succ</math>, is defined for a given subset <math>\,R</math> of nodes and a [[node]] <math>\,y</math>;  | ||
we say that <math>R</math> is '''connected to''' <math>y</math> and write <math>R \succ y</math> if and only if a ''directed hyperpath'' exsists in a hypergraph from <math>R</math>  | we say that <math>\,R</math> is '''connected to''' <math>\,y</math> and write <math>R \succ y</math> if and only if a ''[[directed hyperpath]]'' exsists in a [[hypergraph]] from <math>\,R</math>  | ||
to the node <math>y</math>.  | to the node <math>\,y</math>.  | ||
It is easy to check that the relation <math>\succ</math> satisfies the following set of  | It is easy to check that the relation <math>\succ</math> satisfies the following set of  | ||
| Строка 16: | Строка 16: | ||
(3) <math>R \succ y, \; \forall y \in Y,\mbox{ and }Y \succ z \Rightarrow  | (3) <math>R \succ y, \; \forall y \in Y,\mbox{ and }Y \succ z \Rightarrow  | ||
R \succ z</math> (transitivity).  | R \succ z</math> (transitivity).  | ||
==Литература==  | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.  | |||
Текущая версия от 06:35, 19 марта 2015
Connected to relation — отношение связности ''к'', (достижимость) в гиперграфе.
The relation connected to, which is denoted by the symbol [math]\displaystyle{ \succ }[/math], is defined for a given subset [math]\displaystyle{ \,R }[/math] of nodes and a node [math]\displaystyle{ \,y }[/math]; we say that [math]\displaystyle{ \,R }[/math] is connected to [math]\displaystyle{ \,y }[/math] and write [math]\displaystyle{ R \succ y }[/math] if and only if a directed hyperpath exsists in a hypergraph from [math]\displaystyle{ \,R }[/math] to the node [math]\displaystyle{ \,y }[/math].
It is easy to check that the relation [math]\displaystyle{ \succ }[/math] satisfies the following set of connectivity axioms:
(1) [math]\displaystyle{ y \in R \subseteq V \Rightarrow R \succ y }[/math] (reflexivity);
(2) [math]\displaystyle{ R \succ y\mbox{ and } Z \subseteq V \Rightarrow (R \cup Z) \succ y }[/math] (augmentation);
(3) [math]\displaystyle{ R \succ y, \; \forall y \in Y,\mbox{ and }Y \succ z \Rightarrow R \succ z }[/math] (transitivity).
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.