Connected hypergraph: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Connected hypergraph''' --- связный гиперграф. A hypergraph such that it is not representable as <math>{\mathcal H}_{1} \cup {\mathcal H}_{2}</m…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Connected hypergraph''' --- связный гиперграф.  
'''Connected hypergraph''' — ''[[связный гиперграф]].''


A hypergraph such that it is not representable as <math>{\mathcal H}_{1} \cup
A [[hypergraph]] such that it is not representable as <math>{\mathcal H}_{1} \cup
{\mathcal H}_{2}</math>, where <math>{\mathcal H}_{1}, {\mathcal H}_{2}</math> are vertex-disjoint
{\mathcal H}_{2}</math>, where <math>{\mathcal H}_{1}, {\mathcal H}_{2}</math> are [[vertex]]-disjoint  
non-empty hypergraphs is called '''connected'''. Note that if <math>\emptyset \in E({\mathcal H})</math>,
[[empty hypergraph|non-empty hypergraphs]] is called '''connected'''. Note that if <math>\emptyset \in E({\mathcal H})</math>,
<math>{\mathcal H}</math> is not connected.
<math>{\mathcal H}</math> is not connected.
==Литература==
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 13:29, 19 марта 2015

Connected hypergraphсвязный гиперграф.

A hypergraph such that it is not representable as [math]\displaystyle{ {\mathcal H}_{1} \cup {\mathcal H}_{2} }[/math], where [math]\displaystyle{ {\mathcal H}_{1}, {\mathcal H}_{2} }[/math] are vertex-disjoint non-empty hypergraphs is called connected. Note that if [math]\displaystyle{ \emptyset \in E({\mathcal H}) }[/math], [math]\displaystyle{ {\mathcal H} }[/math] is not connected.

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.