Center vertex: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Center vertex''' --- центральная вершина. A vertex <math>v</math> in a connected graph <math>G</math> is called a '''center (central) vertex''…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Center vertex''' --- центральная вершина.  
'''Center vertex''' — [[центральная вершина]].  


A vertex <math>v</math> in a connected graph <math>G</math> is called a '''center (central) vertex''' if <math>e(v) = rad(G)</math>. A subgraph induced by central
A [[vertex]] <math>v</math> in a [[connected graph]] <math>G</math> is called a '''center (central) vertex''' if <math>e(v) = rad(G)</math>. A [[subgraph]] induced by central
vertices of <math>G</math> is called the '''center''' <math>C(G)</math> of <math>G</math>. It was
vertices of <math>G</math> is called the '''center''' <math>C(G)</math> of <math>G</math>. It was
proved that the center of every graph <math>H</math> is contained in a block (a
proved that the center of every [[graph, undirected graph, nonoriented graph|graph]] <math>H</math> is contained in a block (a
maximal 2-connected subgraph) of <math>H</math>.
maximal 2-connected subgraph) of <math>H</math>.
==Литература==
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 12:01, 1 ноября 2012

Center vertexцентральная вершина.

A vertex [math]\displaystyle{ v }[/math] in a connected graph [math]\displaystyle{ G }[/math] is called a center (central) vertex if [math]\displaystyle{ e(v) = rad(G) }[/math]. A subgraph induced by central vertices of [math]\displaystyle{ G }[/math] is called the center [math]\displaystyle{ C(G) }[/math] of [math]\displaystyle{ G }[/math]. It was proved that the center of every graph [math]\displaystyle{ H }[/math] is contained in a block (a maximal 2-connected subgraph) of [math]\displaystyle{ H }[/math].

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.