Center vertex: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Center vertex''' --- центральная вершина. A vertex <math>v</math> in a connected graph <math>G</math> is called a '''center (central) vertex''…») |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Center vertex''' | '''Center vertex''' — [[центральная вершина]]. | ||
A vertex <math>v</math> in a connected graph <math>G</math> is called a '''center (central) vertex''' if <math>e(v) = rad(G)</math>. A subgraph induced by central | A [[vertex]] <math>v</math> in a [[connected graph]] <math>G</math> is called a '''center (central) vertex''' if <math>e(v) = rad(G)</math>. A [[subgraph]] induced by central | ||
vertices of <math>G</math> is called the '''center''' <math>C(G)</math> of <math>G</math>. It was | vertices of <math>G</math> is called the '''center''' <math>C(G)</math> of <math>G</math>. It was | ||
proved that the center of every graph <math>H</math> is contained in a block (a | proved that the center of every [[graph, undirected graph, nonoriented graph|graph]] <math>H</math> is contained in a block (a | ||
maximal 2-connected subgraph) of <math>H</math>. | maximal 2-connected subgraph) of <math>H</math>. | ||
==Литература== | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 12:01, 1 ноября 2012
Center vertex — центральная вершина.
A vertex [math]\displaystyle{ v }[/math] in a connected graph [math]\displaystyle{ G }[/math] is called a center (central) vertex if [math]\displaystyle{ e(v) = rad(G) }[/math]. A subgraph induced by central vertices of [math]\displaystyle{ G }[/math] is called the center [math]\displaystyle{ C(G) }[/math] of [math]\displaystyle{ G }[/math]. It was proved that the center of every graph [math]\displaystyle{ H }[/math] is contained in a block (a maximal 2-connected subgraph) of [math]\displaystyle{ H }[/math].
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.