Brooks graph: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Brooks graph''' --- граф Брукса. A '''Brooks graph''' is a connected graph that is neither a complete graph nor an odd cycle. '''Brooks' Theorem.''' …»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Brooks graph''' --- граф Брукса.  
'''Brooks graph''' — ''[[граф Брукса]].''


A '''Brooks graph''' is a connected graph that is neither a complete graph
A '''Brooks graph''' is a [[connected graph]] that is neither a [[complete graph]]
nor an odd cycle.
nor an odd [[cycle]].


'''Brooks' Theorem.''' The chromatic number of a Brooks graph
'''Brooks' Theorem.''' The [[chromatic number]] of a Brooks [[graph, undirected graph,  nonoriented graph|graph]] does not exceed its maximum degree.
does not exceed its maximum degree.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 16:46, 20 апреля 2012

Brooks graphграф Брукса.

A Brooks graph is a connected graph that is neither a complete graph nor an odd cycle.

Brooks' Theorem. The chromatic number of a Brooks graph does not exceed its maximum degree.

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.