Аноним

Dominating set: различия между версиями

Материал из WikiGrapp
нет описания правки
Нет описания правки
Нет описания правки
 
(не показаны 2 промежуточные версии этого же участника)
Строка 28: Строка 28:
A '''dominating set of a digraph''' <math>\vec{G}</math> is a set <math>S</math> of vertices
A '''dominating set of a digraph''' <math>\vec{G}</math> is a set <math>S</math> of vertices
such that for every vertex <math>v \not \in S</math> there exists some <math>u \in S</math>
such that for every vertex <math>v \not \in S</math> there exists some <math>u \in S</math>
with <math>(u,v) \in E(\vec{G})</math>. The '''domination number <math>\gamma(\vec{G})</math> of <math>\vec{G}</math>} is defined as the cardinality of the smallest dominating set.
with <math>(u,v) \in E(\vec{G})</math>. The '''domination number <math>\gamma(\vec{G})</math> of <math>\vec{G}</math>''' is defined as the cardinality of the smallest dominating set.


The dominating set problem is ''NP''-complete on arbitrary graphs. It is
The dominating set problem is ''NP''-complete on arbitrary graphs. It is
also ''NP'-complete on several classes of graphs, including planar
also ''NP''-complete on several classes of graphs, including planar
graphs, bipartite graphs and ''chordal'' graphs. The problem can be solved
graphs, bipartite graphs and ''chordal'' graphs. The problem can be solved
in polynomial time on, for example, AT-free graphs, ''permutation graphs, interval graphs'', and trees.
in polynomial time on, for example, AT-free graphs, ''permutation graphs, interval graphs'', and trees.
==See also==
==See also==
*''<math>k</math>-restricted total dominating number''.
*''<math>k</math>-restricted total dominating number''.
12

правок