Associated Cayley digraph: различия между версиями
Glk (обсуждение | вклад) (Новая страница: «'''Associated Cayley digraph''' --- соотнесённый орграф Кэли. Let <math>\Gamma</math> be a group and <math>S</math> be a generating set of …») |
KVN (обсуждение | вклад) Нет описания правки |
||
(не показана 1 промежуточная версия 1 участника) | |||
Строка 1: | Строка 1: | ||
'''Associated Cayley digraph''' | '''Associated Cayley digraph''' — ''[[соотнесённый орграф Кэли]].'' | ||
Let <math>\Gamma</math> be a group and <math>S</math> be a generating set of <math>\Gamma</math> such that | Let <math>\,\Gamma</math> be a group and <math>\,S</math> be a generating set of <math>\,\Gamma</math> such that | ||
(1) <math>e \not \in S</math>, <math>e</math> is the identity in <math>\Gamma</math>, | (1) <math>e \not \in S</math>, <math>\,e</math> is the identity in <math>\,\Gamma</math>, | ||
(2) <math>s \in S \Leftrightarrow s^{-1} \in S</math>. | (2) <math>s \in S \Leftrightarrow s^{-1} \in S</math>. | ||
The '''associated Cayley digraph''' <math>Cay(\Gamma,S)</math> is a digraph | The '''associated Cayley digraph''' <math>\,Cay(\Gamma,S)</math> is a digraph | ||
whose vertices are the elements of <math>\Gamma</math> and arcs are the | whose [[vertex|vertices]] are the elements of <math>\,\Gamma</math> and [[arc|arcs]] are the | ||
couples <math>(x,sx)</math> for <math>x \in \Gamma</math> and <math>s \in S</math>. | couples <math>\,(x,sx)</math> for <math>x \in \Gamma</math> and <math>s \in S</math>. | ||
With this definition, <math>Cay(\Gamma,S)</math> is a connected symmetric digraph | With this definition, <math>\,Cay(\Gamma,S)</math> is a connected symmetric [[digraph]] | ||
(in fact, a strongly connected digraph). | (in fact, a strongly connected digraph). | ||
==Литература== | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 16:12, 19 декабря 2011
Associated Cayley digraph — соотнесённый орграф Кэли.
Let [math]\displaystyle{ \,\Gamma }[/math] be a group and [math]\displaystyle{ \,S }[/math] be a generating set of [math]\displaystyle{ \,\Gamma }[/math] such that
(1) [math]\displaystyle{ e \not \in S }[/math], [math]\displaystyle{ \,e }[/math] is the identity in [math]\displaystyle{ \,\Gamma }[/math],
(2) [math]\displaystyle{ s \in S \Leftrightarrow s^{-1} \in S }[/math].
The associated Cayley digraph [math]\displaystyle{ \,Cay(\Gamma,S) }[/math] is a digraph
whose vertices are the elements of [math]\displaystyle{ \,\Gamma }[/math] and arcs are the
couples [math]\displaystyle{ \,(x,sx) }[/math] for [math]\displaystyle{ x \in \Gamma }[/math] and [math]\displaystyle{ s \in S }[/math].
With this definition, [math]\displaystyle{ \,Cay(\Gamma,S) }[/math] is a connected symmetric digraph (in fact, a strongly connected digraph).
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.