Asteroidal number: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Asteroidal number''' --- астероидальное число. A set of vertices <math>A \subseteq V</math> of a graph <math>G = (V,E)</math> is an '''astero…») |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Asteroidal number''' | '''Asteroidal number''' — ''[[астероидальное число]].'' | ||
A set of | A set of [[vertex|vertices]] <math>A \subseteq V</math> of a [[graph, undirected graph, nonoriented graph|graph]] <math>G = (V,E)</math> is an '''asteroidal set''' if for each <math>a \in A</math> the set <math>A - a</math> is contained in one | ||
vertices <math>A \subseteq V</math> of a graph <math>G = (V,E)</math> is an '''asteroidal set''' if for each <math>a \in A</math> the set <math>A - a</math> is contained in one | |||
component of <math>G - N[a]</math>. The '''asteroidal number''' of a graph <math>G</math>, denoted by | component of <math>G - N[a]</math>. The '''asteroidal number''' of a graph <math>G</math>, denoted by | ||
<math>an(G)</math>, is the maximum cardinality of the asteroidal set in <math>G</math>. | <math>an(G)</math>, is the maximum cardinality of the asteroidal set in <math>G</math>. | ||
Graphs with '''asteroidal number''' at most two are commonly known as '''AT-free graphs'''. The | Graphs with '''asteroidal number''' at most two are commonly known as '''AT-free graphs'''. The | ||
class of AT-free graphs contains well-known graph classes such as ''interval, permutation'' and ''cocomparability'' graphs. | class of AT-free graphs contains well-known graph classes such as ''[[interval graph|interval]], [[permutation graph|permutation]]'' and ''[[cocomparability graph|cocomparability]]'' graphs. |
Версия от 11:46, 9 декабря 2011
Asteroidal number — астероидальное число.
A set of vertices [math]\displaystyle{ A \subseteq V }[/math] of a graph [math]\displaystyle{ G = (V,E) }[/math] is an asteroidal set if for each [math]\displaystyle{ a \in A }[/math] the set [math]\displaystyle{ A - a }[/math] is contained in one component of [math]\displaystyle{ G - N[a] }[/math]. The asteroidal number of a graph [math]\displaystyle{ G }[/math], denoted by [math]\displaystyle{ an(G) }[/math], is the maximum cardinality of the asteroidal set in [math]\displaystyle{ G }[/math].
Graphs with asteroidal number at most two are commonly known as AT-free graphs. The class of AT-free graphs contains well-known graph classes such as interval, permutation and cocomparability graphs.