Adjacent vertices: различия между версиями
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
				
		
		
	
Glk (обсуждение | вклад)  (Создана новая страница размером '''Adjacent vertices''' --- смежные вершины.   '''1.''' Two different vertices that incident with the same edge are called '...)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Adjacent vertices'''   | '''Adjacent vertices''' — ''[[смежные вершины]].''   | ||
'''1.''' Two different vertices that incident with the  | '''1.''' Two different [[vertex|vertices]] that incident with the  | ||
same edge are called '''adjacent vertices'''.  | same [[edge]] are called '''adjacent vertices'''.  | ||
'''2.''' In a digraph <math>G = (V,A)</math>, a vertex <math>u</math> is '''adjacent to''' <math>v</math> if  | '''2.''' In a [[digraph]] <math>\,G = (V,A)</math>, a vertex <math>\,u</math> is '''adjacent to''' <math>\,v</math> if  | ||
<math>(u,v) \in A(G)</math>, and <math>u</math> is '''adjacent from''' <math>w</math>  | <math>(u,v) \in A(G)</math>, and <math>\,u</math> is '''adjacent from''' <math>\,w</math>  | ||
if <math>(w,u) \in A(G)</math>.  | if <math>(w,u) \in A(G)</math>.  | ||
'''3.''' On adjacent vertices in a hypergraph, see '' Partial edge''.  | '''3.''' On adjacent vertices in a [[hypergraph]], see ''[[Partial edge]]''.  | ||
Текущая версия от 07:07, 17 ноября 2011
Adjacent vertices — смежные вершины.
1. Two different vertices that incident with the same edge are called adjacent vertices.
2. In a digraph [math]\displaystyle{ \,G = (V,A) }[/math], a vertex [math]\displaystyle{ \,u }[/math] is adjacent to [math]\displaystyle{ \,v }[/math] if [math]\displaystyle{ (u,v) \in A(G) }[/math], and [math]\displaystyle{ \,u }[/math] is adjacent from [math]\displaystyle{ \,w }[/math] if [math]\displaystyle{ (w,u) \in A(G) }[/math].
3. On adjacent vertices in a hypergraph, see Partial edge.