N-Cube graph: различия между версиями

Перейти к навигации Перейти к поиску
нет описания правки
(Новая страница: «'''<math>n</math>-Cube graph''' --- куб <math>n</math>-мерный. Consider the set <math>Q^{n} = \{(x_{1}, x_{2}, \ldots, x_{n})| \; x_{i} \in \{0,1\}, \: i …»)
 
Нет описания правки
Строка 2: Строка 2:


Consider the set <math>Q^{n} = \{(x_{1}, x_{2}, \ldots, x_{n})| \; x_{i}
Consider the set <math>Q^{n} = \{(x_{1}, x_{2}, \ldots, x_{n})| \; x_{i}
\in \{0,1\}, \: i = 1, \ldots, n\}</math>. For <math>u,v \in Q^{n}</math> the Hamming
\in \{0,1\}, : i = 1, \ldots, n\}</math>. For <math>u,v \in Q^{n}</math> the Hamming
distance <math>\rho(u,v)</math> is defined as the number of entries where <math>u</math> and
distance <math>\rho(u,v)</math> is defined as the number of entries where <math>u</math> and
<math>v</math> differ. An '''<math>n</math>-cube graph''' is a graph on the vertex set <math>Q^{n}</math>, where
<math>v</math> differ. An '''<math>n</math>-cube graph''' is a graph on the vertex set <math>Q^{n}</math>, where
two vertices <math>u, v</math> are ''adjacent'' iff <math>\rho(u,v) = 1</math>.
two vertices <math>u, v</math> are ''adjacent'' iff <math>\rho(u,v) = 1</math>.
The '''<math>n</math>-cube graph''' is a ''regular graph'' with a degree <math>n-1</math>.
The '''<math>n</math>-cube graph''' is a ''regular graph'' with a degree <math>n-1</math>.
7

правок

Навигация