4635
правок
Glk (обсуждение | вклад)  (Создана новая страница размером '''Adjoint digraph''' --- сопряженный орграф.   The ''' adjoint digraph''' is defined as a graph, that is, the one whose ...)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Adjoint digraph'''   | '''Adjoint digraph''' — ''[[сопряженный орграф]].''   | ||
The ''' adjoint digraph''' is defined as a graph, that is, the one whose arcs  | The '''adjoint digraph''' is defined as a [[graph, undirected graph, nonoriented graph|graph]], that is, the one whose [[arc|arcs]]  | ||
are exactly the converses for those of <math>G</math>. The ''adjacency operator'' <math>A(G^{\ast})</math> of <math>G^{\ast}</math> is the adjoint operator  | are exactly the converses for those of <math>\,G</math>. The ''[[adjacency operator]]'' <math>A(G^{\ast})</math> of <math>G^{\ast}</math> is the adjoint operator  | ||
<math>A(G)^{\ast}</math>. Though <math>G^{\ast}</math> is called the ''converse'' digraph  | <math>A(G)^{\ast}</math>. Though <math>G^{\ast}</math> is called the [[converse digraph|''converse'' digraph]]  | ||
of <math>G</math> among graph theorists, the term '''adjoint''' is often used in  | of <math>\,G</math> among graph theorists, the term '''adjoint''' is often used in  | ||
this sense.  | this sense.  | ||
The '''coadjoint graphs''' are graphs <math>G</math> and <math>G^{\ast}</math>  | The '''[[coadjoint graphs]]''' are graphs <math>\,G</math> and <math>G^{\ast}</math>  | ||
satisfying <math>G \cong G^{\ast}</math>.  | satisfying <math>G \cong G^{\ast}</math>.  | ||