
MATEC Web of Conferences 210, 04014 (2018)	 https://doi.org/10.1051/matecconf/201821004014
CSCC 2018

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Automated test generation for optimizing compilers with OpenMP support

Svyatoslav Pankratov1,∗

1A.P. Ershov Institute of Informatics Systems of the SB RAS, 630090, Pr. Akademika Lavrentyeva, 6, Novosibirsk, Russia

Abstract. The correctness of the compiler is a necessary requirement for the correct operation of the software
compiled by it. Therefore, the most important stage in the development of the compiler is verification. Re-
cent widespread of multi-core processors and graphics core integrated to CPU emphasized the problem of the
transition from single-threaded to multi-threaded computing and re-usage of graphics core for general purpose
heterogeneous parallel computations in particular. In this paper, we are presenting an approach to automate test
creation for the verification of the compiler with OpenMP support, based on a generator that uses grammars to
generate syntactically correct executable tests.

1 Introduction

High-level programming languages are the main develop-
ment tool for software. The task of translating the source
code of programs into a representation executable on a
computer system is solved by the compiler. Compilers
have high quality requirements since correctness of com-
piled programs significantly depends on compiler correct-
ness. And software defects caused by errors in the com-
piler are difficult to identify, and impossible to correct
without interference in the compiler itself. The correctness
of the compiler is a necessary requirement for the correct
operation of the software compiled by it. Therefore, the
most important stage in the development of the compiler
is verification.

Due to complexity of programs as compiler input data
and their transformations, the task of compiler verifica-
tion is very tedious and difficult. And in the case of using
an optimizing compiler, it is also algorithmically unsolv-
able. But we can consider the behaviour of the compiler on
some limited class of programs. We can not compare the
result of the transformation with some reference, we can
only consider some properties of the translation produced.
For example, if the compilation of the same program with-
out optimizations succeeds, and with optimizations leads
fails in compiler, then we can talk about the presence of
errors in the optimization code.

Recent widespread of multi-core processors and
graphics core integrated to CPU emphasized the problem
of the transition from single-threaded to multi-threaded
computing and re-usage of graphics core for general pur-
pose heterogeneous parallel computations in particular. To
support these trends from the software side there are open
standards for parallel computing: OpenMP, OpenCL, Cilk
Plus, and others that are supported by major mainstream
compilers. Taking all these facts into account, testing of

∗e-mail: aquaxpi@gmail.com

compiler’s implementation of parallel C extension is par-
ticularly important.

Automatic test generation is an important part of the
supplemental testing, because tests written by hand usu-
ally can’t effectively cover all possible combinations of
language constructions, as well as all situations of appli-
cation optimizations. The QA command of the Intel com-
piler chose an approach using a parametric context-free
grammar, described by a special meta-language for test
generator. Parametric context-free grammars have proven
themselves as a good formalism for constructing gener-
ators of semantically correct and compiler-specific tests
with deterministic behaviour. They were distinguished by
the clarity of the description of generated test programs,
as well as the flexibility and convenience in working with
their context. However, this approach was used only to
generate single-threaded tests executed on the central pro-
cessor. Therefore it is an open question about the pos-
sibility of using an already existing generator of single-
threaded tests based on parametric context-free grammars,
for generating tests for multi-threaded extensions of the C
language, like OpenMP.

2 The problem of compiler testing

The programming language whose strings can be provided
as a compiler input is described by specifications of its
syntax, static semantics and dynamic semantics. Test gen-
eration can be based on any of these language specifica-
tions. These specifications define the set of nested subsets
of all possible generated tests, so that program with cor-
rect dynamic semantic should has correct static semantic
and program with correct static semantic should have cor-
rect syntax.

The syntax specification is defined by the formal gram-
mar [10]. The grammar consists of the following compo-
nents:

2

MATEC Web of Conferences 210, 04014 (2018)	 https://doi.org/10.1051/matecconf/201821004014
CSCC 2018

– finite set of nonterminal symbols;
– finite set of terminal symbols;
– finite set of production rules;
– distinguished symbol, that is the start symbol.

Sequences of terminal symbols that can be derived
from the start symbol of the grammar are called syntac-
tically correct programs. The set of syntactically correct
programs is a subset of the set of all sequences of termi-
nal symbols. Unfortunately, these programs can be used
only for compiler’s parser verification since they cannot
be always compiled.

Static semantics is defined only for syntactically cor-
rect programs; it defines rules for computing program
properties that can be determined without program exe-
cution. These properties include, in particular, types of
variables and expressions. Rules for checking static pro-
gram correctness (context conditions) impose constraints
on possible combinations of values of static program prop-
erties. Programs that meet these static context conditions
can be compiled and used to test the static analyzer of the
compiler.

Dynamic semantics of a programming language de-
fines the meaning of the execution of statically correct pro-
grams in given language. To test dynamic semantics im-
plementation in the compiler, we compile statically correct
programs and execute them to match their observable be-
havior with the reference behavior determined by the refer-
ence program implementation. Reference program could
be obtained by using other compiler that is considered
as error free or the same compiler without optimizations.
Programs with correct dynamic semantic should produce
the same output as reference implementation unless there
is an error in a compiler implementation. In this article,
we’ll make an assumption that programs with correct dy-
namic semantic are deterministic programs. Of course it’s
not true in common case, but OK for testing purposes.

In general, for mainstream programming languages,
such as C/C++, automatic determinism evaluation of any
program is very complex and algorithmically unsolvable
problem for static analysis [2].

Syntactically valid test generation is not a difficult task
and usually it’s done on the basis of context-free grammar
that is used for a target language specification. However,
the generation of the compilable (statically semantically
correct) program is much more difficult task, because it re-
quires compliance with all the contextual constraints of the
target language which is usually done with help of context-
sensitive grammars. Generation of deterministic programs
(dynamic semantically correct) is even more complex is-
sue.

Generators of deterministic programs are usually a
monolithic programs written on a high-level language.
These generators are usually hard to extend and they can
be used only for the generation of programs of a certain
class. There is also an approach to generate executable
programs by using a certain set of predefined patterns with
a given set of variations, but this method also isn’t flexible
and has complexity almost equal to the manual test cre-
ation.

To avoid writing another monolithic test generator In-
tel Compiler QA team decided to use parametric context-
free grammar described by a special meta-language [1].
Parametric context-free grammars were proved to be a
good formalism to construct generators of semantically
correct tests with deterministic behaviour. They provide
simple formalism to specify program syntax structure like
context-free grammars, but allow generation of a broader
class of context-sensitive languages. However, this ap-
proach was used only for the generation of single-threaded
programs that run on the CPU. Therefore it is an open
question if it is possible to use it for an efficient genera-
tion of parallel heterogeneous programs or there is a more
suitable solution? In this paper we will try to answer this
question.

3 Related works

At the moment, there are many works about automatic test
generation, we will describe only majors.

In earlier studies of test generation for compiler, K.V.
Hanford [6] and P. Pardom [9] presented methods to gener-
ate syntactically correct programs for procedural language
compilers, without regard to the rules of static semantics.

Hanford’s work [6] was published in 1970. He pro-
posed a method for generating test data for PL/1 compiler
based on the dynamic grammar. This method produces
syntactically corrected programs, but part of this are se-
mantically incorrect.

P. Pardom’s work [9] had became fundamental in the
field of test generation for compilers and served as a start-
ing point for further researches.

A.G. Duncan and J.S. Hutchison [5] presented a
method for generating test cases that can be used through-
out the entire life cycle of a program. This method uses
attributed grammars as input for generator. If it possible
due contextual constraints, all non-terminal symbols will
be consistently disclosed during generation process. Thus,
as result we have a set of syntactically and semantically
correct tests, that covers all production rules of grammar
and satisfy to all contextual conditions. This approach al-
lows only conduct analysis of performed contextual condi-
tions. This aspect leads to a large number of pointless runs
of the generator, because we need to terminate generation
process if we have unmet contextual conditions.

Bazichi and Spadafora [3] presented a new method,
when generator is driven by a tabular description of source
language. This description is in a formalism which nicely
extends context-free grammars in a context-dependent
direction, but still retains the structure and readability
of BNF. Unfortunately, authors suggested to use non-
terminal symbols for recognising the left part of rule, and
it may take a huge time if chain of symbols is long. Also
paper doesn’t solves a problem of finding short grammar’s
rules.

Work of A.Stasenko [1] can be reviewed as a succes-
sor of Bazzichi and Spadafora’s work. It uses parametric
context-free grammar for generating syntactically and se-
mantically correct test cases for C/C++/Fortran compilers.

3

MATEC Web of Conferences 210, 04014 (2018)	 https://doi.org/10.1051/matecconf/201821004014
CSCC 2018

As we decided to use the same formalism, we will explain
it later.

4 Approach to the problem

4.1 Main idea

As part of this work we’ve extended existing paramet-
ric context-free grammar (generates serial C tests) for test
generation with OpenMP extension. We focused on gen-
eration of parallel extensions of standard C loops. It’s a
trick, but it will help to rump up support of other major
parallelization C extensions, such us Cilk, CilkPlus, UPC,
OpenHMPP and GFX-offload.

Focus on generating various parallel loops allows to
improve compiler vectorization (data parallelism) opti-
mization validation which also play important role in pro-
viding performance in modern computing architectures.
OpenMP implementation have some restrictions about a
parallel loops such as follows:

– no transition (return, break or goto) from the loop is al-
lowed;

– restrictions on type, range and increment statement of
control loop variable;

– restrictions on mixing construction of various parallel
language extensions (for example, OpenMP block can-
not use _Cilk_spawn and _Cilk_sync primitives).

4.2 A brief formal description of the parametric
context-free grammar

To describe the grammar we use a special language - mix
of BNF-notation and functional language. The grammar
is specified in a single text file that consists of strings that
specify list of rules and comments. Rule consists of left
and right parts. Left part consists of identifier, context
parameters, context recognizers and context conditions.
Right part consists of set of rewrite alternatives or multi-
line string. Identifier is a sequence of letters that does not
start with a digit. Context parameters can be specified by
simple name or in a list like manner. Context recognizers
are used to give names to different parts of the context pa-
rameters and to form other named objects to be used later
in the rule. The context condition is an expression that
evaluates to a boolean type. And if rule contains several
conditions, they are joined by logical operation "AND".
Also there are several built-in functions to ease work with
lists, conditions and numbers.

During generation the choice between rule alternatives
is made randomly. Of course that does not guarantee
reachability of all specified rules, however, as shown by
other studies in this area, such problem is typical for other
testing approaches [8]. Also the problem of infinite gen-
eration is solved automatically this way: after a specified
number of generated symbols generator starts to select the
shortest alternative if it exists. Generation approach used
in this paper was described in the article by Stasenko A.P.
[2].

4.3 Generator infrastructure

Grammar and generator are not enough to organize a seri-
ous testing process. We also need a system that will vali-
date the generated tests as it was created by the authors of
the generator. It’s was named as Test Generator Harness
(hereinafter - TGH) and allows to automatically test the
compiler via generated tests. Block scheme of the system
is shown on Figure 1.

Generator

Generator

Generator

�
�
�

Validator

BRUTUS

Code reducer

�

�
�

Rechecking system

Test base

Report system

� �

�

Figure 1. Generator infrastructure

It’s written on Python language and could be used in
virtualized environments, such Docker or KVM.

Let’s take a closer look to a whole system process flow.
Each generated test is compiled two times with and with-
out optimizations. If the test with additional pointer and
type checks is successfully compiled without compiler op-
timizations and executed without crashes we consider it
to be a statically and dynamically correct program and its
results are used later as reference for test compiled with
compiler optimizations. The successful reference test exe-
cution assumes the lack of runtime reports about problems
with pointers and types, zero exit code and execution with-
out exceeding the specified timeout. This is the first stage
of testing. The next step is to check the compilation op-
timizations. If the test at this point caused the compiler
problem it is stored for further processing. If the compila-
tion is successful, we check execution results and compare
it with reference results. If the program fails on runtime
then it is also stored. In the other case test is removed and
TGH starts the process of new test generation.

Also Intel compiler provides special functionality that
allows TGH to selectively disable optimizations and it
may help to find guilty compiler component (optimiza-
tion). Name of this internal compiler’s functionality is
BRUTUS. So we try to find guilty optimization and store
information about it with failed test.

Failed tests are passed to the tool (Reduce) that it-
eratively removes parts of the test program that are not
important for compiler problem reproduction. Reduced
failing tests are stored in the testbase with notes about
platform (combination of hardware and software compo-
nents), guilty optimization and computer system where
problem was found.

To optimize usage of storage space, we store only the
smallest 10 test for each different optimization. The sys-
tem periodically rechecks all the tests from the testbase to
remove tests that start to pass on all platforms. In addition
to checking for the latest version of the compiler, system
checks test on product branch of compiler to avoid getting
these errors in the final product. Every day, TGH sends
reports to QA engineer with list of compiler optimizations

4

MATEC Web of Conferences 210, 04014 (2018)	 https://doi.org/10.1051/matecconf/201821004014
CSCC 2018

that have failing tests that are not marked by compiler de-
fect in a bug tracking system. As a next step QA engineer
submits new defect to the bug tracking system and marks
the test by new defect identifier. The state of all defects
that mark tests are also tracked by TGH. If a defect is in
the closed state, but the test continues to fall, then the QA
engineer will be informed about that.

4.4 OpenMP grammar rules

As a basis for OpenMP grammar we took existing gram-
mar to generate simple C++ tests with basic rules to gen-
erate loops and conditions. As it was mentioned above
we decided to modify loop generation to use "omp paral-
lel for" pragma statements. To achieve that we made the
following changes:

– modified grammar context data to detect if we are inside
such parallel loop to be able to prevent generation of
loop exit constructions and avoid nested parallelization;

– added required context conditions to all rules that gener-
ate constructions that are prohibited under parallel loops
[7];

– added rules, that generate loops with "omp parallel for"
pragma and form a new context new-ctx for all produc-
tion rules in parallel block.

We found that usage of local or global variables for ar-
ray access can cause data races, so for array accesses it was
decided to use only variables declared in the parallel loop
as well as variables from outside loops. Given example be-
low, it fails due to the loop-carried output dependence on
the variable global_var. The global_var is shared among
all threads based on OpenMP default shared rule, so there
is a data-race condition on the global_var while one thread
is reading global_var, another thread might be writing to
it.

Listing 1. Data Race example
#pragma omp parallel for
for (k = 0; k < 100, k++){

l = array[k + global_var];
array[k + global_var] = do_work(l);

}

All these means ensure that generated programs for
the most part will have correct dynamic semantics without
data races in this particular case. We do not require guar-
anteed absence of data races, because all generated tests
will be validated on further phases that will be discussed
later.

After adding new generation rules it was also required
to add the support of parallel directives into Reduce tool to
avoid situations when reduce will accidentally make serial
program from parallel.

Listing 2. OpenMP rules
omp-for-clause (():_)
::= "; /* no lvals variables case */"

omp-for-clause ctx @
(lv:rv:as:ivs:fs:ret:isl:_) = ctx ? eq(isl, 1)
::= "; /* OpenMP cycle skipped due to no nesting */"

omp-for-clause ctx @
(lv:rv:as:ivs:fs:ret:isl:_) = ctx,

i = "i", new-lv = (), new-ivs = (i,),
new-ctx = (new-lv:rv:as:new-ivs:fs:0:1:())
? and(le(len(new-ivs), 3), eq(isl, 0))
::= *10 { "_Pragma(\"omp parallel for"

omp-private(new-lv)"\")"
"for (int " i "=" low-lim(ivs) "; "
i " <= " big-lim(ivs) "; " step-pos(i) ") "
block(new-ctx)}

Since we can now allow test generation with race con-
ditions it is a important to explain how we can select tests
with correct dynamic semantic among them. For that task
we planned to use third-party software for static and dy-
namic analysis. Unfortunately, we were not able to find
a suitable solution based on static analysis. All existent
static analyzers have a huge count of false positive mes-
sages, high price and require additional changes in gen-
erated program. For dynamic analysis we experimented
with Helgrind/DRD [4] and Intel Inspector XE [11]. Our
experiments with DRD identified that it has major issue
with false positive messages that cannot be easily filtered
out since exception mechanism that this tool provides is
not flexible enough.

Experiments with Intel Inspector XE that also allows
dynamic analysis of multi-threaded programs showed an
interesting thing: Intel compiler pointer checker mech-
anism that we utilize for additional program validation
cause false positive messages about data races. It was
found to be caused by Intel compiler instrumentation for
pointer checker that do insecure stack accesses, that was
confirmed by simple program with empty omp loop com-
piled with Intel pointer checker functionality turned on,
where Inspector still shows messages about possible data
races in empty loop. To avoid this false positive diag-
nostic, in the TGH we modified validation process for
tests from OpenMP generator to do validation with pointer
checker and Inspector separately.

5 Conclusion

Extended grammar for checking parallelization and vec-
torization loop transformations allowed us to find a several
new bugs in the parallel and offload features of modern
compiler. Formalism of parametric context-free grammars
proved that it can be a convenient tool for deterministic test
generation even in case of parallel constructs although we
had to use additional tools to ensure dynamic correctness
of generated code.

In the future we plan to expand a set of parallel con-
structions that can be generated and increase percentage of
correctly generated tests. There are also plans to increase
the amount of compiler optimization covered by generated
tests by tuning generation weights in rules. We are also ex-
perimenting with average size of generated tests to make
them more complex and thus more productive.

This research has been supported by the Russian Sci-
ence Foundation (RSF grant No 18-11-00118).

References

[1] A.P. Stasenko, Parallel programs construction and
optimization, 16, 301-313 (2008)

5

MATEC Web of Conferences 210, 04014 (2018)	 https://doi.org/10.1051/matecconf/201821004014
CSCC 2018

[2] A.S. Kossatchev, M.A. Posypkin, Programming and
Computing Software, 31 No. 1, 10-19 (2005)

[3] F. Bazzichi, I. Spadafora, IEEE transactions on Soft-
ware Engineering, SE-8, 343-353 (1982)

[4] A. Muehlenfeld, F. Wotawa, Informal Proceedings
of the International Workshop on Multithreading in
Hardware and Software, 06, (2006)

[5] A.G. Duncan, J.S. Hutchison, In Proc. of the 5th
international conference on Software engineering,
170-178 (1981)

[6] K.V. Hanford, IBM Systems Journal, 9, 242-257
(1970)

[7] B. P. Miller, ACM Letters on Programming Lan-
guages and Systems, 1 No.1, 74-88 (1992)

[8] A.S. Kossatchev, M.A. Posypkin, Programming and
Computing Software, 31 No. 1, 10-19 (2005)

[9] P.A. Purdom, BIT, 2, 336-375 (1972)
[10] A.V. Aho, R. Sethi, J.D. Ullman, Compilers: princi-

ples, techniques, and tools (Addison-Wesley Long-
man Publishing Co., Inc., Boston, 1986) 796

[11] S. Blair-Chappell, A. Stokes, Parallel Programming
with Intel Parallel Studio XE (John Wiley & Sons,
2012) 217-250

