Аноним

Усиление степени сжатия текста: различия между версиями

Материал из WEGA
м
 
(не показаны 33 промежуточные версии этого же участника)
Строка 3: Строка 3:


== Постановка задачи ==
== Постановка задачи ==
Неформально техника усиления представляет собой метод, который при применении к определенному классу алгоритмов повышает их эффективность. Повышение должно быть доказуемым и четко определенным в виде одного или нескольких параметров, характеризующих эффективность работы алгоритма. Примеры подобных «усилителей» можно найти в сегментах рандомизированных алгоритмов (здесь усилитель позволяет превратить алгоритм BPP в RP [6]) и теории вычислительного обучения (в данном случае усилитель позволяет повысить точность прогнозирования у слабого обучающего алгоритма [10]). Задача усиления сжатия заключается в разработке техники, повышающей эффективность сжатия широкого класса алгоритмов. В частности, результатом работы Ферраджины и др. явилась обобщенная техника, позволяющая «заставить» компрессор, не использовавший контекстной информации вовсе, всегда использовать наилучший возможный контекст.
Неформально техника усиления представляет собой метод, который при применении к определенному классу алгоритмов повышает их эффективность. Повышение должно быть доказуемым и четко определенным в терминах одного или нескольких параметров, характеризующих эффективность работы алгоритма. Примеры подобных «усилителей» можно найти в сегментах рандомизированных алгоритмов (здесь усилитель позволяет превратить алгоритм BPP в RP [6]) и теории вычислительного обучения (в данном случае усилитель позволяет повысить точность прогнозирования у слабого обучающего алгоритма [10]). Задача усиления сжатия заключается в разработке техники, повышающей эффективность сжатия широкого класса алгоритмов. В частности, результатом работы Ферраджины и др. явилась обобщенная техника, позволяющая «заставить» компрессор, не использовавший контекстной информации вовсе, всегда использовать наилучший возможный контекст.




Классические алгоритмы Хаффмана и арифметического кодирования [1] могут служить примерами ''статистических'' алгоритмов сжатия, обычно кодирующих входной символ в соответствии с ''общей'' частотой его вхождения в данных, подлежащих сжатию. [''Динамические версии этих алгоритмов рассматривают частоту схождения символа в уже просканированной порции входных данных''.] Этот подход эффективен и прост в реализации, однако обеспечивает невысокий уровень сжатия. Эффективность работы статистических алгоритмов сжатия можно повысить в результате использования моделей ''более высокого порядка'', получающих более качественную оценку частоты встречаемости входных символов. Алгоритм сжатия PPM [9] реализует эту идею за сбора данных о частоте вхождения всех символов, попадающих в ''любой'' контекст длины k, и сжатия их при помощи арифметического кодирования. Длина контекста k представляет собой параметр алгоритма, который определяется подлежащими сжатию данными: он будет разным при сжатии текста на английском языке, последовательности ДНК или документа в формате XML. Можно привести и другие примеры сложных программ сжатия, таких как алгоритмы Лемпеля-Зива и Барроуза-Уилера [9], использующих информацию о контексте ''неявным'' образом. Все эти алгоритмы, учитывающие контекст, хороши по критерию эффективности работы, однако сложны для реализации и анализа.
Классические алгоритмы Хаффмана и арифметического кодирования [1] могут служить примерами ''статистических'' алгоритмов сжатия, обычно кодирующих входной символ в соответствии с ''общей'' частотой его вхождения в данных, подлежащих сжатию. [''Динамические версии этих алгоритмов рассматривают частоту вхождения символа в уже просканированной порции входных данных''.] Этот подход эффективен и прост в реализации, однако обеспечивает невысокий уровень сжатия. Эффективность работы статистических алгоритмов сжатия можно повысить за счет использования моделей ''более высокого порядка'', получающих более качественную оценку частоты встречаемости входных символов. Алгоритм сжатия PPM [9] реализует эту идею путем сбора данных о частоте вхождения всех символов, попадающих в ''любой'' контекст длины k, и сжатия их при помощи арифметического кодирования. Длина контекста k представляет собой параметр алгоритма, который определяется подлежащими сжатию данными: он будет разным при сжатии текста на английском языке, последовательности ДНК или документа в формате XML. Можно привести и другие примеры сложных программ сжатия, таких как алгоритмы Лемпеля-Зива и [[Преобразование Барроуза-Уилера|Барроуза-Уилера]] [9], использующих информацию о контексте ''неявным'' образом. Все эти алгоритмы, учитывающие контекст, обеспечивают высокую эффективность работы, однако обычно сложны для реализации и анализа.




Строка 18: Строка 18:




В следующих разделах будет изложено точное формальное обоснование перечисленных характеристик.
В следующих разделах будет приведено точное формальное обоснование перечисленных характеристик.


== Основные результаты ==
== Основные результаты ==
Строка 31: Строка 31:




Пример 1. Пусть строка s = mississippi. Для k = 1 имеем <math>i_s = mssp, s_s = isis, p_s = ip \;</math>. Следовательно, <math>H_1(s) = \frac{4}{11} H_0 (mssp) + \frac{4}{11} H_0 (isis) + \frac{2}{11} H_0 (ip) = \frac{6}{11} + \frac{4}{11} + \frac{2}{11} = \frac{12}{11}.</math>  
'''Пример 1'''. Пусть строка s = mississippi. Для k = 1 имеем <math>i_s = mssp, s_s = isis, p_s = ip \;</math>. Следовательно, <math>H_1(s) = \frac{4}{11} H_0 (mssp) + \frac{4}{11} H_0 (isis) + \frac{2}{11} H_0 (ip) = \frac{6}{11} + \frac{4}{11} + \frac{2}{11} = \frac{12}{11}.</math>  






Отметим, что эмпирическая энтропия определяется для любой строки и может использоваться для измерения эффективности алгоритмов сжатия без каких-либо предположений о входных данных. К сожалению, для некоторых строк (с очень высокой сжимаемостью) эмпирическая энтропия обеспечивает слишком консервативное значение нижней границы. Например, для <math>s = a^n \;</math> имеет место <math>|s| \; H_k(s) = 0</math> для любого <math>k \ge 0 \;</math>. Чтобы лучше справляться со строками с высокой сжимаемостью, в работе [7] было введено понятие ''модифицированной эмпирической энтропии нулевого порядка'' <math>H_0^*(s) \;</math>, имеющей следующее свойство: <math>|s| \; H^*_0(s)</math> по меньшей мере равно количеству бит, необходимых для записи длины s в двоичной форме. ''Модифицированная эмпирическая энтропия k-го порядка'' <math>H^*_k \;</math> определяется как максимальная степень сжатия, которой можно достичь при просмотре ''не более чем'' k символов, следующих за кодируемым.
Отметим, что эмпирическая энтропия определяется для любой строки и может использоваться для измерения эффективности алгоритмов сжатия без каких-либо предположений о входных данных. К сожалению, для некоторых строк (с очень высокой сжимаемостью) эмпирическая энтропия обеспечивает слишком консервативное значение нижней границы. Например, для <math>s = a^n \;</math> имеет место <math>|s| \; H_k(s) = 0</math> для любого <math>k \ge 0 \;</math>. Чтобы лучше справляться со строками с высокой сжимаемостью, в работе [7] было введено понятие ''модифицированной эмпирической энтропии нулевого порядка'' <math>H_0^*(s) \;</math>, имеющей следующее свойство: <math>|s| \; H^*_0(s)</math> по меньшей мере равно количеству бит, необходимых для записи длины s в двоичной форме. ''Модифицированная эмпирическая энтропия k-го порядка'' <math>H^*_k \;</math> определяется через <math>H^*_0 \;</math> как максимальная степень сжатия, которой можно достичь при просмотре ''не более чем'' k символов, следующих за кодируемым.


== Преобразование Барроуза-Уилера ==
== Преобразование Барроуза-Уилера ==
Пусть дана строка s. Преобразование Барроуза-Уилера [2] (bwt) включает три основных этапа:
Пусть дана строка s. Преобразование Барроуза-Уилера [2] (bwt) включает три основных этапа:


(1) добавить в концу строки s специальный символ $, который меньше любого другого символа в S;
(1) добавить в концу строки s специальный символ $, который меньше любого другого символа в <math>\Sigma \;</math>;


(2) сформировать концептуальную матрицу M, строки которой содержат круговые сдвиги строки s$, отсортированные в лексикографическом порядке;
(2) сформировать ''концептуальную'' матрицу <math>\mathcal{M} \;</math>, строки которой содержат циклические сдвиги строки s$, отсортированные в лексикографическом порядке;


(3) построить преобразованный текст s = bwt(s), взяв последний столбец матрицы M (см. рис. 1).
(3) построить преобразованный текст <math>\hat{s} = bwt(s) \;</math>, взяв последний столбец матрицы <math>\mathcal{M} \;</math> (см. рис. 1).




В работе [ ] Барроуз и Уилер доказали, что s является перестановкой s и что можно восстановить s из I за время O(jsj).
В работе [2] Барроуз и Уилер доказали, что <math>\hat{s} \;</math> является перестановкой s и что можно восстановить s из <math>\hat{s} \;</math> за время O(|s|).




Чтобы убедиться в мощи преобразования bwt, рассмотрим ситуацию с точки зрения эмпирической энтропии. Зафиксируем целое положительное число k. Первые k столбцов матрицы bwt содержат все подстроки s длины k, лексикограчфически упорядоченные (а также k подстрок, содержащих символ $). Для любой подстроки w строки s длины k символы, непосредственно предшествующие каждому вхождению w в s, сгруппированы вместе в множество последовательных позиций в s, поскольку они являются последними символами строк матрицы M, которым предшествуют символы w. Используя нотацию, предложенную при определении Нь, можно перефразировать это свойство так, чтобы символы ws были последовательными в строке s или, что эквивалентно, что s содержит в качестве подстроки перестановку JIW{WS) строки ws.
Чтобы убедиться в мощи преобразования bwt, рассмотрим ситуацию с точки зрения эмпирической энтропии. Зафиксируем целое положительное число k. Первые k столбцов матрицы bwt содержат все подстроки s длины k, лексикографически упорядоченные (а также k подстрок, содержащих символ $). Для любой подстроки w строки s длиной k символы, непосредственно предшествующие каждому вхождению w в s, сгруппированы вместе в множество последовательных позиций в <math>\hat{s} \;</math>, поскольку они являются последними символами строк матрицы <math>\mathcal{M} \;</math>, которым предшествуют символы w. Используя нотацию, предложенную при определении <math>H_k \;</math>, можно переформулировать это свойство так, чтобы символы <math>w_s \;</math> были последовательными в <math>\hat{s} \;</math> или, что эквивалентно, чтобы <math>\hat{s} \;</math> содержало в качестве подстроки перестановку <math>\pi_w (w_s) \;</math> строки <math>w_s \;</math>.




Пример 2. Пусть s = mississippi и k = 1. На рис. 1 показано, что s [1, 4] = pssm является перестановкой is =mssp. Кроме того, s[6, 7] = pi является перестановкой ps = ip, а s[8,11] = ssii – перестановкой ss = isis.
'''Пример 2'''. Пусть s = mississippi и k = 1. На рис. 1 показано, что <math>\hat{s} [1, 4] = pssm \;</math> является перестановкой <math>i_s = mssp \;</math>. Кроме того, <math>\hat{s} [6, 7] = pi \;</math> является перестановкой <math>p_s = ip \;</math>, а <math>\hat{s} [8, 11] = ssii \;</math> – перестановкой <math>s_s = isis \;</math>.




Поскольку перестановка строки не меняет ее (модифицированной) эмпирической энтропии нулевого порядка (то есть HQ{JIW{WS)) = H0(WS)), преобразование Барроуза-Уилера может рассматриваться как способ свести задачу сжатия строки s вплоть до энтропии k-го порядка к задаче сжатия отдельных фрагментов s вплоть до их энтропии нулевого порядка. Чтобы убедиться в этом, рассмотрим разбиение строки s на подстроки JIW{WS), изменяя w над Sk. Из этого следует, что s = \_\w€zk fw^s), где J – оператор конкатенации над строками.3
Поскольку перестановка строки не меняет ее (модифицированной) эмпирической энтропии нулевого порядка (то есть <math>H_0 (\pi_w (w_s)) = H_0 (w_s)) \;</math>), преобразование Барроуза-Уилера может рассматриваться как способ свести задачу сжатия строки s вплоть до энтропии k-го порядка к задаче сжатия ''различных фрагментов'' <math>\hat{s} \;</math> вплоть до их энтропии ''нулевого порядка''. Чтобы убедиться в этом, рассмотрим разбиение <math>\hat{s} \;</math> на подстроки <math>\pi_w (w_s) \;</math>, изменяя w над <math>\Sigma^k \;</math>. Из этого следует, что <math>\hat{s} = \bigsqcup_{w \in \Sigma^k} \pi_w (w_s) \;</math>, где <math>\bigsqcup \;</math> – оператор конкатенации над строками. [''Помимо <math>\bigsqcup_{w \in \Sigma^k} \pi_w (w_s) \;</math>, строка <math>\hat{s} \;</math> также содержит последние k символов s (не входящие ни в какой <math>w_s \;</math>) и специальный символ $. Для простоты в дальнейшем изложении эти символы будут игнорироваться.'']


3 Помимо tw2 jjk 7iw(ws), строка s также содержит последние k символов s (не входящие ни в какой ws) и специальный символ $. Для простоты в дальнейшем изложении эти символы будут игнорироваться.


Согласно (1), отсюда следует <math>\sum_{w \in \Sigma^k} |\pi_w (w_s)| H_0 (\pi_w (w_s)) = \sum_{w \in \Sigma^k} |w_s| H_0 (w_s) = |s| H_k (s)</math>.


Из (1) следует, что J2  \JIW{WS)\H0{JIW{WS)) = Xj  wsjH0(ws) = jsjHk(s): w2


Следовательно, для сжатия строки s вплоть до <math>|s| H_k (s) \;</math> достаточно сжать каждую подстроку <math>\pi_w (w_s)) \;</math> вплоть до эмпирической энтропии нулевого порядка. Заметим, однако, что при использовании вышеприведенной схемы параметр k необходимо выбрать заранее. Более того, подобную схему нельзя применить к <math>H^*_k \;</math>, определенной в терминах контекстов длины ''не более'' k. В результате на данный момент не известно эффективной процедуры для вычисления разбиения <math>\hat{s} \;</math> согласно <math>H^*_k(s) \;</math>. Усилитель сжатия [3] представляет собой естественное дополнение bwt и позволяет сжимать любую строку s до <math>H_k(s) \;</math> (или <math>H^*_k(s) \;</math>) одновременно для всех <math>k \ge 0 \;</math>.


Следовательно, для сжатия строки s вплоть до js достаточно сжать каждую ее подстроку JIW{WS) вплоть до эмпирической энтропии нулевого порядка. Заметим, однако, что при использовании вышеприведенной схемы параметр k необходимы выбрать заранее. Более того, подобную схему нельзя применить к H*, определенной в терминах контекстов длины не более k. В результате на данный момент не известно эффеективной процедуры для вычисления разбиения s согласно H*(s). Усилитель сжатия [3] представляет собой естественное дополнение bwt и позволяет сжимать любую строку s до Hk(s) (или H*(s)) одновременно для всех k > 0.
== Алгоритм усиления степени сжатия ==
Важнейшим компонентом алгоритма усиления степени сжатия является взаимосвязь между матрицей bwt и такой структурой данных, как [[суффиксное дерево]]. Обозначим за <math>\mathcal{T} \;</math> суффиксное дерево строки s$. У <math>\mathcal{T} \;</math> имеется |s| + 1 листьев, по одному на суффикс s$, а его ребра помечены подстроками s$ (см. рис. 1). Любая вершина u дерева <math>\mathcal{T} \;</math> ''неявно ассоциируется'' с подстрокой s$, задаваемой конкатенацией меток ребер на нисходящем пути от корня <math>\mathcal{T} \;</math> к u. В рамках этой неявной ассоциации листья <math>\mathcal{T} \;</math> соответствуют суффиксам s$. Предположим, что ребра суффиксного дерева лексикографически отсортированы. Поскольку каждая строка матрицы bwt имеет префикс в виде суффикса s$, а строки лексикографически отсортированы, i-й лист суффиксного дерева (считая справа налево) соответствует i-й строке матрицы bwt. Ассоциируем с i-м листом <math>\mathcal{T} \;</math> i-й символ <math>\hat{s} = bwt(s) \;</math>. На рисунке эти символы представлены внутри кружков.
 
 
Для любой вершины суффиксного дерева u обозначим за <math>\hat{s}\langle u \rangle \;</math> подстроку <math>\hat{s} \;</math>, полученную в результате конкатенации, слева направо, символов, ассоциированных с листьями, являющимися потомками вершины u. Разумеется, <math>\hat{s} \langle root( \mathcal{T} ) \rangle  = \hat{s} \;</math>. Подмножество <math>\mathcal{L} \;</math> вершин <math>\mathcal{T} \;</math> называется ''листовым покрытием'', если каждый лист суффиксного дерева имеет ''уникального'' предка в <math>\mathcal{L} \;</math>. Любое листовое покрытие <math>\mathcal{L} = \{ u_1, ..., u_p \} \;</math> естественным образом порождает разбиение  листьев <math>\mathcal{T} \;</math>. В силу взаимосвязи между <math>\mathcal{T} \;</math> и матрицей bwt оно также является разбиением <math>\hat{s} \;</math>, а именно – <math>\{ \hat{s} \langle u_1 \rangle , ..., \hat{s} \langle u_p \rangle \} \;</math>.
 
 
'''Пример 3.''' Рассмотрим суффиксное дерево на рисунке. Листовое покрытие состоит из всех вершин, имеющих глубину 1. Разбиение <math>\hat{s}\;</math>, порожденное этим листовым покрытием, выглядит как {i, pssm, $; pi, ssii}.
 
 
[[Файл:BTC_1.png]]
 
Матрица bwt (слева) и суффиксное дерево (справа) для строки s = mississippi$. Выходным значением алгоритма bwt является последний столбец матрицы bwt, т.е. <math>\hat{s} = bwt(s) = ipssm$pissii \;</math>.
 
 
Обозначим за C функцию, которая ассоциирует с каждой строкой x над <math>\Sigma \cup \{ $ \} \;</math> положительное вещественное значение C(x). Для любого листового покрытия <math>\mathcal{L} \;</math> определим его стоимость как <math>C(\mathcal{L}) = \sum_{u \in \mathcal{L}} C( \hat{s} \langle u \rangle) \;</math>. Иными словами, стоимость листового покрытия <math>\mathcal{L} \;</math> равна сумме стоимостей строк в разбиении, порожденном <math>\mathcal{L} \;</math>. Листовое покрытие <math>\mathcal{L}_{min} \;</math> называется ''оптимальным'' относительно C, если <math>C(\mathcal{L}_{min}) \le C(\mathcal{L}) \;</math> для любого листового покрытия <math>\mathcal{L} \;</math>.
 
 
Пусть A – алгоритм сжатия, такой, что для любой строки x размер ее выходного значения ограничен <math>|x| H_0(x) + \eta |x| + \mu \;</math> бит, где <math>\eta \;</math> и <math>\mu \;</math> – константы. Определим функцию стоимости <math>C_A(x) = |x| H_0 (x) + \eta |x| + \mu \;</math>. В работе [3] Ферраджина и коллеги используют жадный алгоритм с линейным временем выполнения, вычисляющий оптимальное листовое покрытие <math>\mathcal{L}_{min} \;</math> относительно <math>C_A \;</math>. Авторы работы [3] также показали, что для любого <math>k \ge 0 \;</math> существует листовое покрытие <math>\mathcal{L}_k \;</math> стоимостью <math>C_A(\mathcal{L}_k) = |s| H_k(s) + \eta |s| + O(|\Sigma|^k) \;</math>. Эти два важнейших наблюдения показывают, что при использовании A для сжатия каждой подстроки в разбиении, порожденном оптимальным листовым покрытием <math>\mathcal{L}_{min} \;</math>, общий размер выходного значения ограничен в терминах <math>|s| H_k(s) \;</math> для любого <math>k \ge 0 \;</math>. На деле <math>\sum_{u \in \mathcal{L}_{min}} C_A (\hat{s} \langle u \rangle ) = C_A(\mathcal{L}_{min}) \le C_A (\mathcal{L}_k) = |s| H_k(s) + \eta|s| + O(|\Sigma|^k)</math>.
 
 
Суммируя все вышесказанное, усиление алгоритма сжатия A над строкой s состоит из трех основных этапов:
 
1. Вычислить <math>\hat{s} = bwt(s) \;</math>;
 
2. Вычислить оптимальное листовое покрытие <math>\mathcal{L}_{min} \;</math> относительно <math>C_A \;</math> и разбиение <math>\hat{s} \;</math>, соответствующее <math>\mathcal{L}_{min} \;</math>;


== Алгоритм усиления степени сжатия ==
3. Сжать каждую подстроку разбиения при помощи алгоритма A.
 
 
Таким образом, парадигма усиления сводит разработку эффективных алгоритмов сжатия, использующих информацию о контексте, к (обычно более простой) разработке алгоритмов сжатия нулевого порядка. Эффективность этой парадигмы описывается следующей теоремой.
 
 
'''Теорема 1 ([Ферраджина и др., 2005). Пусть A – алгоритм сжатия, который сжимает любую строку x до размера не более <math>|x| H_0(x) + \eta |x| + \mu \;</math> бит. Механизм усиления степени сжатия, примененный к A, дает выходное значение, размер которого ограничен <math>|s| H_k(s) + log |s| + \eta |s| + O(|\Sigma|^k) \;</math> бит одновременно для всех <math>k \ge 0 \;</math>. Учитывая A, механизм усиления привносит в процесс сжатия дополнительные накладные расходы на память в размере O(|s| log |s|) бит, но не вносит дополнительных асимптотических затрат времени.'''
 
 
Аналогичный результат имеет место и для модифицированной энтропии <math>H^*_k \;</math> (однако доказать его намного сложнее): пусть дан алгоритм сжатия A, который сжимает любую строку x до не более чем <math>\lambda |x| \; H^*_0 (x) + \mu</math> бит. Механизм усиления степени сжатия дает выходное значение, размер которого ограничен <math>\lambda |s| \; H^*_k(s) + log |s| + O(|\Sigma|^k)</math> бит одновременно для всех <math>k \ge 0 \;</math>. В работе [3] авторы также показали, что ни один алгоритм сжатия, удовлетворяющий некоторым мягким предположениям относительно его внутренних принципов работы, не способен получить схожую границу, не включающую одновременно мультипликативный коэффициент <math>\lambda \;</math> и аддитивный логарифмический терм. Кроме того, в [3] была предложена конкретизация усилителя, которая сжимает любую строку s до не более чем <math>2,5 |s| \; H^*_k(s) +log |s| + O(|\Sigma|^k)</math> бит. Эта граница аналитически превосходит границы, доказанные для лучших существующих алгоритмов сжатия, включая алгоритмы Лемпеля-Зива и [[преобразование Барроуза-Уилера|Барроуза-Уилера]] и алгоритм PPM.
 
== Применение ==
Помимо естественного применения в области сжатия данных, механизмы повышения степени сжатия также использовались для разработки сжатых полнотекстовых индексов [8].
 
== Открытые вопросы ==
Парадигму усиления можно обобщить следующим образом. Пусть дан алгоритм компрессии A; необходимо найти и перестановку <math>\mathcal{P} \;</math> для символов строки s, и стратегию разбиения, такие, чтобы примененный к ним подход к усилению минимизировал размер выходных данных. Выше были приведены убедительные свидетельства того, что преобразование Барроуза-Уилера является элегантной и эффективной перестановкой <math>\mathcal{P} \;</math>. Как ни удивительно, другие классические задачи сжатия данных также вписываются в эту структуру: поиск кратчайшей общей надстроки (эта задача является MAX-SNP-сложной), кодирование с переменной длиной строки для множества строк (полиномиально разрешимая задача), LZ77 и нахождение минимального количества фраз (также MAX-SNP-сложная). Таким образом, подход к усилению является достаточно общим, чтобы заслуживать дальнейших теоретических и практических исследований [5].
 
== Экспериментальные результаты ==
Исследование нескольких алгоритмов сжатия, основанных на усилении, и сравнение их с другими современными способами сжатия приведено в работе [4]. Эксперименты показывают, что техника усиления является более надежной по сравнению с другими подходами на базе алгоритма bwt и хорошо работает даже с менее эффективными алгоритмами сжатия нулевого порядка. Однако положительные результаты достигаются за счет использования большего количества ресурсов (времени и памяти).
 
== Наборы данных ==
Наборы данных, использовавшиеся в [4], доступны по адресу http://www.mfn.unipmn.it/~manzini/boosting. Другие наборы данных для сжатия и индексирования можно найти на сайте Pizza&Chili http://pizzachili.di.unipi.it/.
 
== Ссылка на код ==
Страница «Усиление алгоритмов сжатия» (Compression Boosting, http://www.mfn.unipmn.it/~manzini/boosting) содержит исходный код всех алгоритмов, протестированных в [4]. Этот код организован в виде библиотеки с высокой степенью модульности, которая может использоваться любым алгоритмом сжатия и не требует знания алгоритма bwt или процедуры усиления.
 
== См. также ==
* [[Арифметическое кодирование для сжатия данных]]
* [[Преобразование Барроуза-Уилера]]
* [[Индексация сжатого текста]]
* [[Сжатие таблиц]]
* [[Сжатие и индексирование дерева]]
 
== Литература ==
1. Bell, T.C., Cleary, J.G., Witten, I.H.: Text compression. Prentice Hall, NJ (1990)
 
2. Burrows, M. Wheeler, D.: A block sorting lossless data compression algorithm. Tech. Report 124, Digital Equipment Corporation (1994)
 
3. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual compression inoptimal lineartime.J.ACM 52,688-713 (2005)
 
4. Ferragina, P., Giancarlo, R., Manzini, G.: The engineering of a compression boosting library: Theory vs practice in bwt compression. In: Proc. 14th European Symposium on Algorithms (ESA). LNCS, vol. 4168, pp. 756-767. Springer, Berlin (2006)
 
5. Giancarlo, R., Restivo, A., Sciortino, M.: From first principles to the Burrows and Wheeler transform and beyond, via combinatorial optimization. Theor. Comput. Sci. 387(3):236-248 (2007)
 
6. Karp, R., Pippenger, N., Sipser, M.: A Time-Randomness trade-off. In: Proc. Conference on Probabilistic Computational Complexity, AMS, 1985, pp. 150-159
 
7. Manzini, G.: An analysis of the Burrows-Wheeler transform. J.ACM 48,407-430 (2001)
 
8. Navarro, G., Makinen, V.: Compressed full text indexes. ACM Comput. Surv.39(1) (2007)
 
9. Salomon, D.: Data Compression: the Complete Reference, 4th edn. Springer, London (2004)
 
10. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 2,197-227 (1990)
4430

правок