Аноним

Технологическое отображение ППВМ: различия между версиями

Материал из WEGA
м
нет описания правки
мНет описания правки
 
(не показано 6 промежуточных версий этого же участника)
Строка 35: Строка 35:


На рис. 1 представлены булева сеть, ее ориентированный ациклический граф, покрытие 3-допустимыми конусами и полученная в результате сеть 3-LUT. Как можно заметить, конусы покрытия могут перекрываться; это допустимо и нередко оказывается полезным. (При реализации отображенной сети часть логики, попавшая в перекрытие, будет продублирована для каждой таблицы K-LUT, в которую она входит).
На рис. 1 представлены булева сеть, ее ориентированный ациклический граф, покрытие 3-допустимыми конусами и полученная в результате сеть 3-LUT. Как можно заметить, конусы покрытия могут перекрываться; это допустимо и нередко оказывается полезным. (При реализации отображенной сети часть логики, попавшая в перекрытие, будет продублирована для каждой таблицы K-LUT, в которую она входит).
[[Файл:FPGA_1.png|720px]]


Рисунок 1. Технологическое отображение ППВМ
Рисунок 1. Технологическое отображение ППВМ
Строка 88: Строка 91:




Поиск K-допустимого разреза высоты (p > 0; случай p = 0 является тривиальным) в алгоритме FlowMap выполняется посредством преобразования <math>N_v \;</math> в ''транспортную сеть'' <math>F_v \;</math> и вычисления потока в этой сети [4] (отсюда и название). Преобразование выполняется следующим образом. Для каждой вершины <math>u \in N_v - \{ v \}, l(u) < p \;</math>, в <math>F_v \;</math> имеются две вершины <math>u_1 \;</math> и <math>u_2 \;</math>, связанные ''мостовым ребром'' <math>\langle u_1, u_2 \rangle</math>; <math>F_v \;</math> содержит единственную ''вершину-сток'' t для всех остальных вершин в <math>N_v \;</math> и единственную ''вершину-источник'' s. Для каждой вершины u из <math>N_v \;</math>, являющейся первичным входом, которая соответствует мостовому ребру <math>\langle u_1, u_2 \rangle</math> в <math>F_v \;</math>, <math>F_v \;</math> содержит ребро <math>\langle s, u_1 \rangle</math>; для каждого ребра <math>\langle u, w \rangle</math> и <math>N_v \;</math> в случае, если и u, и w имеют мостовые ребра в <math>F_v \;</math>, <math>F_v \;</math> содержит ребро <math>\langle u_2, w_1 \rangle</math>; если u имеет мостовое ребро, а w не имеет, <math>F_v \;</math> содержит ребро edge <math>\langle u_2, t \rangle</math>; в противном случае (если ни у одной вершины не имеется мостового ребра) <math>F_v \;</math> не содержит соответствующего ребра. Мостовые ребра имеют единичную пропускную способность; все прочие ребра имеют бесконечную пропускную способность. Если заметить, что каждое ребро в Fv с бесконечной (или единичной) пропускной способностью соответствует вершине <math>u \in N_v \;</math> с l(u) < p и наоборот, и вспомнить теорему о максимальном потоке и минимальном сечении [4], можно показать справедливость следующей леммы.
Поиск K-допустимого разреза высоты (p > 0; случай p = 0 является тривиальным) в алгоритме FlowMap выполняется посредством преобразования <math>N_v \;</math> в ''транспортную сеть'' <math>F_v \;</math> и вычисления потока в этой сети [4] (отсюда и название). Преобразование выполняется следующим образом. Для каждой вершины <math>u \in N_v - \{ v \}, l(u) < p \;</math>, в <math>F_v \;</math> имеются две вершины <math>u_1 \;</math> и <math>u_2 \;</math>, связанные ''мостовым ребром'' <math>\langle u_1, u_2 \rangle</math>; <math>F_v \;</math> содержит единственную ''вершину-сток'' t для всех остальных вершин в <math>N_v \;</math> и единственную ''вершину-источник'' s. Для каждой вершины u из <math>N_v \;</math>, являющейся первичным входом, которая соответствует мостовому ребру <math>\langle u_1, u_2 \rangle</math> в <math>F_v \;</math>, <math>F_v \;</math> содержит ребро <math>\langle s, u_1 \rangle</math>; для каждого ребра <math>\langle u, w \rangle</math> и <math>N_v \;</math> в случае, если и u, и w имеют мостовые ребра в <math>F_v \;</math>, <math>F_v \;</math> содержит ребро <math>\langle u_2, w_1 \rangle</math>; если u имеет мостовое ребро, а w не имеет, <math>F_v \;</math> содержит ребро edge <math>\langle u_2, t \rangle</math>; в противном случае (если ни у одной вершины не имеется мостового ребра) <math>F_v \;</math> не содержит соответствующего ребра. Мостовые ребра имеют единичную пропускную способность; все прочие ребра имеют бесконечную пропускную способность. Если заметить, что каждое ребро в <math>F_v \;</math> с бесконечной (или единичной) пропускной способностью соответствует вершине <math>u \in N_v \;</math> с l(u) < p и наоборот, и вспомнить теорему о максимальном потоке и минимальном сечении [4], можно показать справедливость следующей леммы.
 
 
'''Лемма 4'''. Вершина v содержит K-допустимый разрез высоты p в том и только том случае, если значение максимального потока в сети <math>F_v \;</math> не превышает K.
 
 
Зная поток в сети <math>F_v \;</math>, можно вычислить максимальный поток при помощи алгоритма нахождения дополняющего пути [4]. После вычисления максимального потока ''оставшийся граф'' сети потока отключается, и соответствующий ''минимальный разрез'' (X, X') определяется следующим образом: <math>v \in X' \;</math> ; для <math>u \in N_v - \{ v \} \;</math>, если оно является мостовым множеством в <math>F_v \;</math> и <math>u_1 \;</math> может быть достигнуто при помощи поиска в глубину по оставшемуся графу из s, то <math>u \in X \;</math> ; в противном случае <math>u \in X' \;</math>.
 
 
Заметим, что как только величина потока превысит K, вычисление может остановиться, зная, что в этом случае нужного K-допустимого разреза найти не удастся. В этом случае можно модифицировать сеть потока, связав мостами все вершины в <math>N_v - \{ v \} \;</math>, что позволит включить вершины u с l(u) = p в вычисление разреза, и найти K-допустимый разрез с высотой p + 1 аналогичным образом.
 
 
Дополняющий путь вычисляется за время, линейное относительно количества ребер, и для каждого вычисления разреза существует не более K дополнений. Применяя алгоритм к каждой вершине в топологическом порядке, получим
 
 
'''Теорема 2. В K-ограниченной булевой сети с n вершинами и m ребрами вычисление K-допустимого разреза минимальной высоты для каждой вершины может быть выполнено за время O(Kmn).'''
 
 
Разрез, найденный алгоритмом, имеет другое свойство:
 
 
'''Лемма 5'''. Разрез (X, X'), вычисленный вышеописанным образом, представляет собой уникальный минимальный разрез максимального объема; более того, если (Y, Y') – еще один минимальный разрез, то <math>Y' \subseteq X'</math>.
 
 
Интуитивно понятно, что разрез большего объема определяет конус большей величины, охватывающий больше логики, в силу чего разрез большего объема является более предпочтительным. Однако заметим, что лемма 5 говорит только о максимуме среди минимальных разрезов; если n(X, X') < K, то могут существовать другие разрезы, все еще являющиеся K-допустимыми, но имеющие большую величину и больший объем. Алгоритм постобработки, используемый FlowMap, пытается увеличить (X, X') за счет коллапсирования всех вершин из X', а также одной или нескольких вершин в сечении, в сток и последующего повторного вычисления потока; это приводит к получению разреза большего объема и оказывается выигрышным, если разрез по-прежнему остается K-допустимым.
 
 
'''Построение K-покрытия'''
 
После того как K-допустимые разрезы минимальной высоты были найдены для всех вершин, каждой вершине оказывается сопоставлен K-допустимый конус <math>C_v \;</math>, определяемый ее разрезом, имеющим минимальную глубину. После этого построение K-покрытия <math>N_M = (V_M, E_M) \;</math> является тривиальным. Во-первых, в <math>V_M \;</math> включаются все вершины, являющиеся первичными выходами. Затем для любого конуса <math>C_v \in V_M \;</math> конус <math>C_u \;</math> для каждой не являющейся первичным входом вершины <math>u \in input(v) \;</math> также включается в <math>V_M \;</math>, равно как и каждая являющаяся первичным входом вершина <math>u \in input(v) \;</math>. Точно так же <math>\langle C_u, C_v \rangle \in E_M</math> для каждой не являющейся первичным входом вершины <math>u \in input(C_v) \;</math>; <math>\langle u, C_v \rangle \in E_M</math> для каждой являющейся первичным входом вершины <math>u \in input(C_v) \;</math>.
 
 
'''Лемма 6'''. K-покрытие, построенное вышеописанным образом, является оптимальным по глубине.
 
 
Эта процедура линейна по времени, следовательно,
 
 
'''Теорема 3. Задача оптимального по глубине технологического отображения для ППВМ на основе таблиц K-LUT на булеву сеть с n вершинами и m ребрами может быть решена за время O(Kmn).'''
 
== Применение ==
Алгоритм FlowMap использовался как центральный структурный компонент более сложных алгоритмов синтеза логики ППВМ и технологического отображения. Существует множество различных вариантов, подходящих для удовлетворения различных потребностей практических приложений. Некоторые из них вкратце описаны далее. Более детальное изложение вариантов и приложений можно найти в работах [1, 3].
 
 
'''Более сложные модели задержки'''
 
С минимальными изменениями алгоритм может быть применен для модели с неединичными задержками, в которой задержки вершин и/или ребер могут различаться, оставаясь статичными. Модели с динамическими задержками, в которых задержка сети определяется ее структурой после отображения, неприменимы к данному алгоритму. Оптимальное по задержке отображение с использованием динамической модели задержки на деле является NP-полным [3].
 
 
'''Более сложные архитектуры'''
 
Алгоритм может быть адаптирован к более сложным архитектурам ППВМ, нежели гомогенные массивы таблиц K-LUT. К примеру, отображение для ППВМ с двумя размерами таблиц LUT может быть выполнено посредством вычисления конуса для каждого размера и динамического выбора лучшего варианта.
 
 
'''Несколько целей оптимизации'''
 
Алгоритм ориентирован на минимизацию задержки, однако можно использовать его для минимизации площади (в терминах количества выбранных конусов) и других целей при помощи адаптации критерия выбора разреза. Исходный алгоритм решает задачу минимизации площади при помощи максимизации объема разрезов; значительно более сильная минимизация может быть достигнута за счет рассмотрения большего количества K-допустимых разрезов и осуществления рациональных выборов – например, допущения разрезов большей высоты вдоль некритических путей и т. п. Однако нахождение оптимальной площади является NP-полной задачей.
 
 
'''Интеграция с другими техниками оптимизации'''
 
Алгоритм может сочетаться с другими типами оптимизации, включая ресинхронизацию, повторный логический синтез и физический синтез.
 
== См. также ==
* [[Разбиение схемы: сбалансированный подход с минимальным разрезом на базе сетевого потока]]
* [[Кластеризация на основе эффективности]]
* [[Технологическое отображение последовательной схемы]]
 
== Литература ==
 
Алгоритм FlowMap в более детальном виде и с экспериментальными результатами представлен в работе [2]. Общую информацию о ППВМ можно найти в [5]. Понятия и алгоритмы расчета сетевого потока адекватно изложены в [4]. Комплексный обзор подходов к автоматизации проектирования ППВМ, включающий множество вариаций и способов применения алгоритма FlowMap и других алгоритмов, можно найти в [1, 3].
 
 
1. Chen, D., Cong, J., Pan, P.: FPGA design automation: a survey.
Foundations and Trends in Electronic Design Automation, vol 1, no 3. Now Publishers, Hanover, USA (2006)
 
2. Cong, J., Ding, Y.: An optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs, Proc. IEEE/ACM International Conference on Computer-Aided Design, pp. 48-53. San Jose, USA (1992)
 
3. Cong, J., Ding, Y.: Combinational logic synthesis for LUT based field programmable gate arrays. ACM Trans. Design Autom. Electron. Sys. 1(2): 145-204 (1996)


4. Tarjan, R.: Data  Structures and  Network Algorithms. SIAM. Philadelphia, USA (1983)


'''Лемма''' 4. Вершина v содержит K-допустимый разрез высоты p в том и только том случае, если значение максимального потока в сети <math>F_v \;</math> не превышает K.
5. Trimberger, S.: Field-Programmable Gate Array Technology. Springer, Boston, USA (1994)
4430

правок