Аноним

Раскраска графа: различия между версиями

Материал из WEGA
м
нет описания правки
мНет описания правки
 
(не показаны 3 промежуточные версии этого же участника)
Строка 3: Строка 3:


== Постановка задачи ==
== Постановка задачи ==
Независимым множеством в неориентированном графе G = (V, E) называется множество вершин, порождающее подграф, не содержащий дуг. Обозначим размер максимального независимого множества графа G как <math>\alpha (G) \; </math>. Для целого числа k, k-раскраска графа G представляет собой функцию <math>\sigma : V \to [1 \; ... \; k]</math>, которая назначает цвета вершинам G. Допустимой k-раскраской графа G является раскраска, в которой каждый цветовой класс представляет собой независимое множество. Наименьшее значение k, для которого существует допустимая k-раскраска графа G, называется хроматическим числом графа и обозначается <math>\chi (G) \; </math>. Нахождение <math>\chi (G) \; </math> представляет собой фундаментальную NP-полную задачу. В силу этого, если ограничиваться алгоритмами с полиномиальным временем исполнения, мы переходим к вопросу об оценке значения <math>\chi (G) \; </math> или к тесно связанной с ним задаче приближенной раскраски графа.
Независимым множеством в неориентированном графе G = (V, E) называется множество вершин, порождающее подграф, не содержащий дуг. Обозначим размер максимального независимого множества графа G как <math>\alpha (G) \; </math>. Для целого числа k, k-раскраска графа G представляет собой функцию <math>\sigma : V \to [1 \; ... \; k]</math>, которая назначает цвета вершинам G. Допустимой k-раскраской графа G является раскраска, в которой каждый цветовой класс представляет собой независимое множество. Наименьшее значение k, для которого существует допустимая k-раскраска графа G, называется хроматическим числом графа и обозначается <math>\chi (G) \; </math>. Нахождение <math>\chi (G) \; </math> представляет собой фундаментальную NP-полную задачу. В силу этого, если ограничиваться алгоритмами с полиномиальным временем выполнения, мы переходим к вопросу об оценке значения <math>\chi (G) \; </math> или к тесно связанной с ним задаче приближенной раскраски графа.




Строка 107: Строка 107:




Векторные раскраски, включая <math>\theta</math>-функцию Ловаса и ее варианты, также активно изучались в контексте алгоритмов аппроксимации и для других задач – таких как аппроксимация <math>\alpha (G) \; </math>, аппроксимация задачи минимального вершинного покрытия и комбинаторная оптимизация в контексте случайных графов.
Векторные раскраски, включая <math>\theta</math>-функцию Ловаса и ее варианты, также активно изучались в контексте аппроксимационных алгоритмов и для других задач – таких как аппроксимация <math>\alpha (G) \; </math>, аппроксимация задачи минимального вершинного покрытия и комбинаторная оптимизация в контексте случайных графов.


== Применение ==
== Применение ==
Строка 116: Строка 116:


== См. также ==
== См. также ==
Распределение каналов и маршрутизация в беспроводных ячеистых мультирадиосетях
* ''[[Распределение каналов и маршрутизация в беспроводных ячеистых мультирадиосетях]]
Максимальный разрез
* ''[[Максимальный разрез]]
► Рандомизированная маршрутизация
* ''[[Рандомизированное округление]]
Самый разреженный разрез
* ''[[Самый разреженный разрез]]
 


== Литература ==
== Литература ==
4430

правок